RESUMO
OBJECTIVES: Interleukin (IL)-2 production by mouse spleen cells stimulated with an anti-CD3 antibody is significantly enhanced by caffeic acid phenethyl ester (CAPE), a major constituent of Chinese propolis (CP). In this study, we evaluated the functional significance of IL-2 in CAPE-treated activated spleen cells. METHODS: Mouse spleen cells were stimulated with an anti-CD3 monoclonal antibody in the presence of CAPE. Cytokine production was examined using an enzyme-linked immunosorbent assay (ELISA). Messenger RNA level expression was examined via reverse transcription quantitative polymerase chain reaction (RT-PCR). IL-2 function was assessed using IL-2 and a neutralizing antibody. Spleen cell subsets were identified and characterized using flow cytometry. RESULTS: CAPE treatment of anti-CD3 antibody-stimulated spleen cells reduced IFN-γ production, then enhanced IL-2 production, followed by enhancement of IL-4 and IL-10 production. The Th2 cytokine production enhancing effects of CAPE were completely abolished by addition of an anti-IL-2 neutralizing antibody. In the absence of CAPE, exogenously added IL-2 could enhance IL-4 production to a lesser degree, but did not stimulate IL-10 production, in stimulated spleen cells. Interestingly, CAPE significantly reduced the proportions of CD4+ and CD8+ cells, and increased those of CD4-CD8- cells among anti-CD3 stimulated spleen cells, in the presence or absence of anti-IL-2 neutralizing antibody treatment. CONCLUSIONS: CAPE reduced IFN-γ production, then enhanced IL-4 and IL-10 production via the activity of specifically elevated IL-2 in stimulated spleen cells. CAPE exerted these effects in a CD4- CD8- cell specific manner.
RESUMO
Surface pre-reacted glass-ionomer (S-PRG) filler is a bioactive glass filler capable of releasing various ions. A culture medium to which was added an S-PRG filler eluate rich in boron was reported to enhance alkaline phosphatase (ALP) activity in human dental pulp-derived stem cells (hDPSC). To clarify the role of boron eluted from S-PRG fillers, the modified S-PRG filler eluate with different boron concentrations was prepared by using an anion exchange material. Therefore, elemental mapping analysis of anion exchange material, adsorption ratio, hDPSCs proliferation and ALP activity were evaluated. For statistical analysis, Kruskal-Wallis test was used, with statistical significance determined at p<0.05. ALP activity enhancement was not observed in hDPSC cultured in the medium that contained the S-PRG filler eluate from which boron had been removed. The result suggested the possibility that an S-PRG filler eluate with controlled boron release could be useful for the development of novel dental materials.
Assuntos
Resinas Acrílicas , Boro , Polpa Dentária , Dióxido de Silício , Humanos , Boro/farmacologia , Cimentos de Ionômeros de Vidro , Ânions , Células-TroncoRESUMO
OBJECTIVES: We evaluated the immune-modulatory effects of Chinese propolis (CP) and its major constituent, caffeic acid phenethyl ester (CAPE), on the cytokine production of anti-CD3 antibody-stimulated mouse spleen cells. METHODS: Mouse spleen cells stimulated by anti-CD3 monoclonal antibody were co-cultured with CP, CAPE, and HC030031, a specific antagonist of the TRPA1 Ca2+-permeable cation channel. Cytokine production was assayed by enzyme-linked immunosorbent assay. Interleukin (IL)-2 mRNA expression was examined by reverse transcription-quantitative polymerase chain reaction. RESULTS: In stimulated spleen cells treated with 1/16,000 CP diluent, IL-2 production was markedly enhanced, while IL-4 and IL-10 productions were not significantly affected. In contrast, interferon (IFN)-γ, IL-6, and IL-17 productions were markedly reduced. These effects of CP were reproduced by the CAPE treatment. A time-course observation demonstrated that, compared to control cells, IL-2 mRNA expression and production were significantly enhanced in the spleen cells stimulated by CAPE; however, IL-2 production was markedly delayed compared to that in the untreated control cells. The enhancement of IL-2 production by CAPE was scarcely alleviated by the addition of HC030031. These effects of CAPE upon IL-2 mRNA production were abolished in spleen cells without anti-CD3 antibody stimulation. CONCLUSIONS: CAPE is an important regulator of CP for cytokine regulation in anti-CD3 antibody-stimulated spleen cells. The agent specifically reduced IFN-γ, IL-6, and IL-17 and slightly enhanced Th2 cytokine production while significantly enhancing IL-2 production at the transcriptional level.
Assuntos
Própole , Camundongos , Animais , Própole/farmacologia , Interleucina-17 , Interleucina-2 , Interleucina-6 , Baço/metabolismo , Citocinas/metabolismo , RNA Mensageiro/genéticaRESUMO
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
RESUMO
The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.
Assuntos
Proteínas de Sinalização Intercelular CCN , Imagem Óptica , Microscopia de Fluorescência/métodos , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Corantes Fluorescentes/metabolismo , Organelas/metabolismo , Proteínas/metabolismoRESUMO
The function of CCN family proteins is determined by their interactions with multiple cofactors that are present in the microenvironment. Therefore, determining these cofactors is critically important in understanding the molecular function of CCN family members. For this objective, a bacteriophage random peptide display library is a suitable tool. In this library, each filamentous bacteriophage is designed to display an oligopeptide of 7-20 random amino acid residues on its surface. Bacteriophage clones that possess peptides that bind to a CCN family protein are selected through several cycles of a process called biopanning or affinity selection. By determining the nucleotide sequence of the DNA that encodes the displayed peptide, the oligopeptides that specifically bind to the CCN family member can be specified. The obtained peptide sequences can be utilized to design peptide aptamers for CCN family proteins, or as a key sequence to determine new CCN family cofactor candidates in silico. Instead of a random peptide cDNA library, an antibody cDNA library from naïve lymphocytes or from B cells immunized by a CCN family protein can be used in order to obtain a highly specific CCN family detection or functional modulation tool.
Assuntos
Bacteriófagos , Proteínas de Sinalização Intercelular CCN , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Bacteriófagos/genética , Oligopeptídeos/metabolismo , Ligação ProteicaRESUMO
OBJECTIVES: In this report, we attempt to clarify the immune modulatory effects of Brazilian green propolis (BGP) and its major component, artepillin C, on the cytokine production of anti-CD3 antibody-stimulated mouse spleen cells. We also estimate the physiological mechanism affecting artepillin C's upon the cells. METHODS: Male C3H/HeN mouse spleen cells stimulated by antiCD3 monoclonal antibody were co-cultured with BGP, artepillin C, and HC030031, a transient receptor potential ankyrin 1 (TRPA1) Ca2+ channel antagonist. The synthesis of interferon (IFN)-γ, interleukin (IL)-6, IL-17, IL-4, IL-10, and IL-2 was assayed by enzyme-linked immunoassay. The expression of IL-2 mRNA and the protein product were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analyses, respectively. RESULTS: The production of IL-2 was markedly enhanced, while that of IL-4 and IL-10 was not significantly affected; by contrast, the production of IFN-γ, IL-6, and IL-17 was significantly reduced in the antibody-stimulated spleen cells treated with BGP at a non-cytostatic concentration. These effects were reproduced in the cells treated with artepillin C. The expression of IL-2 mRNA was unaffected; however, that of the protein was significantly enhanced in the artepillin C-treated cells compared to untreated control cells. The enhancement of protein expression and the production of IL-2 by artepillin C was significantly alleviated by adding HC030031. CONCLUSIONS: Artepillin C is an important regulator of cytokine synthesis from activated spleen cells. The agent specifically augmented the expression of IL-2 via the Ca2+-permeable cation channel, TRPA1, at least in part, at the translational or secretion levels.
Assuntos
Própole , Acetanilidas , Animais , Anquirinas , Anticorpos Monoclonais , Brasil , Interferons , Interleucina-17 , Interleucina-2 , Interleucina-4 , Interleucina-6 , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fenilpropionatos , Própole/farmacologia , Purinas , RNA Mensageiro , Baço , Canal de Cátion TRPA1RESUMO
Numerous studies have shown that the sustained release of ions from dental restorative materials have acid buffering capacity, prevents tooth enamel demineralization, and inhibits bacterial adhesion. Herein, the release behavior and bioresponsiveness of ions released from surface pre-reacted glass-ionomer (S-PRG) fillers were investigated in different types of media based on human dental pulp-derived stem cell (hDPSC) responses. The hDPSCs were cultured for 1-7 days in S-PRG eluates diluted with varying amounts of cell culture media. S-PRG released several types of ions, such as F-, Sr2+, Na+, Al3+, BO33-, and SiO32-. The balance of eluted ions differed depending on the dilution and solvent, which in turn affected the cytotoxicity, cell morphology, cell proliferation, and alkane phosphatase activity of hDPSCs, among other properties. The results suggest that tailored S-PRG filler eluates could be designed and prepared for application in dental practice.
Assuntos
Polpa Dentária , Desmineralização do Dente , Esmalte Dentário , Cimentos de Ionômeros de Vidro , Humanos , Células-TroncoRESUMO
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
RESUMO
OBJECTIVES: We have previously reported that mouse oral squamous carcinoma (OSCC), Sq-1979-1, produces interleukin (IL)-1α, which specifically enhances the immunosuppressive activity of co-cultured mesenchymal stromal 10T1/2 cells. This study assessed the conditions promoting the production of IL-1α in Sq-1979-1 cells, which could further enhance the immunosuppressive function of 10T1/2 cells, and evaluated its expression in OSCC tissues. METHODS: The expression of IL-1α was examined by RT-PCR, western blotting, and enzyme-linked immune sorbent assay (ELISA). The interferon (IFN)- γ-producing capability of anti-CD3 antibody-stimulated mouse spleen cells co-cultured with 10T1/2 cells and conditioned medium (CM) from Sq-1979-1 cells was examined by ELISA. The function of IL-1α was examined using an anti-IL1α antibody. Immunohistochemical analysis of the OSCC tissues was performed. RESULTS: The production of IL-1α from Sq-1979-1 cells was synergistically enhanced in lower serum (0.5% or 1.0% FBS) at the transcriptional level, and under hypoxia (1.0% oxygen) at the release level compared to that in the control medium supplemented with 10% FBS under normoxia. The IFN-γ-producing capability of stimulated spleen cells co-cultured with 10T1/2 cells was significantly reduced in the CMs prepared with the lower serum or under hypoxia. These functions of CMs were completely abolished by the anti-IL-1α antibody. The expression of IL-1α in OSCC tissues was prominent in the midst of a carcinomatous cellular lesion or a nearby necrotic lesion, where a supply deficiency could occur. CONCLUSION: s: IL-1α production by Sq-1979-1 cells was synergistically augmented under low serum and hypoxic conditions, which could promote the immunosuppressive activity of mesenchymal cells.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Neoplasias Bucais , Animais , Hipóxia , Camundongos , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
Radiofrequency magnetron sputtering of silicon was applied onto zirconia surfaces by use of a non-doped Si wafer at 2%, 5%, 8%, and 10% oxygen volumes. Immediately after sputtering, the contact angle was practically 0 for all oxygen volume specimens. In terms of sustainability of the hydrophilicity, however, 5% oxygen volume was found to be optimal. Scanning electron microscopy and energy dispersive X-ray spectroscopy clearly suggested the presence of silica layer on zirconia surfaces. The shear bond strength of the pre-treated zirconia and resin was 35.03±4.97 MPa, which was approximately 3.5 times higher than that of zirconia without any sputtering treatment (9.26±1.21 MPa). The failure mode of the pre-treated zirconia specimen was cohesive failure, whereas that of the control specimen was observed to be interface failure.
Assuntos
Resinas Compostas , Colagem Dentária , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Dióxido de Silício , Estresse Mecânico , Propriedades de Superfície , ZircônioRESUMO
Mineral trioxide aggregate (MTA) cement is widely used in the field of endodontic treatment. We herein synthesized calcium silicates from calcium carbonate and silicon dioxide, with the aim of reducing the cost associated with the MTA. Additionally, we prepared gypsum-containing calcium silicate cement to reduce the setting time while enhancing the mechanical strength. We evaluated the physical properties of this cement and investigated the response of human dental pulp stem cells (hDPSCs) grown in culture media containing cement eluate. Our results revealed that calcium silicates could be easily synthesized in lab-scale. Furthermore, we demonstrate that gypsum addition helps shorten the setting time while increasing the compressive strength of dental cements. The synthesized gypsum-containing calcium silicate cement showed minimal cytotoxicity and did not inhibit the proliferation of hDPSCs. These results suggested that the newly developed calcium silicate material could be a promising pulp capping material.
Assuntos
Sulfato de Cálcio , Cimentos Dentários , Compostos de Alumínio , Cálcio , Compostos de Cálcio , Combinação de Medicamentos , Humanos , Teste de Materiais , Óxidos , Cimento de Silicato , SilicatosRESUMO
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Assuntos
Condrócitos/metabolismo , Glicólise , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Fator Regulador X1/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Condrócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Idade Gestacional , Glicólise/efeitos dos fármacos , Humanos , Articulações/embriologia , Articulações/metabolismo , Camundongos Endogâmicos BALB C , Proteína Sobre-Expressa em Nefroblastoma/genética , Fator Regulador X1/genética , Fluoreto de Sódio/farmacologiaRESUMO
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-ß, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
RESUMO
The aim of this research was to investigate the value of autofluorescence imaging of oral cancer across different stages of tumor growth, to assist in detecting tumors. A xenograft mouse model was created with human oral squamous cell carcinoma cell line HSC-3 being subcutaneously inoculated into nude mice. Tumor imaging was performed with an autofluorescence imaging method (Illumiscan®) using the luminance ratio, which was defined as the luminance of the tumor site over the luminance of normal skin tissue normalized to a value of 1.0. This luminance ratio was continuously observed postinoculation. Tumor and normal skin tissues were harvested, and differences in the concentrations of flavin adenine dinucleotide and nicotinamide adenine dinucleotide were examined. The luminance ratio of the tumor sites was 0.85 ± 0.05, and there was no significant change in the ratio over time, even if the tumor proliferated and expanded. Furthermore, flavin adenine dinucleotide and nicotinamide adenine dinucleotide were significantly lower in tumor tissue than in normal skin tissue. A luminance ratio under 0.90 indicates a high possibility of tumor, irrespective of the tumor growth stage. However, this cutoff value was determined using a xenograft mouse model and therefore requires further validation before being used in clinical diagnosis.
RESUMO
Administration of bone marrow-derived mesenchymal stem cells (MSCs) is a possible treatment for graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation and other inflammatory conditions. To address the mechanism of immunosuppression by MSCs, in particular those derived from adipose tissue (AMSCs), AMSCs were isolated from three different mouse strains, and the suppressive capacity of the AMSCs thus obtained to suppress interferon (IFN)-γ generation in mixed lymphocyte reaction cultures serving as an in vitro model of GVHD were assessed. It was revealed that the AMSCs had a potent capacity to suppress IFN-γ production regardless of their strain of origin and that such suppression was not associated with production of interleukin-10. In addition, the results demonstrated that ß2-microglobulin (ß2m)-deficient AMSCs from ß2m-/- mice were also potent suppressor cells, verifying the fact that the mechanism underlying the suppression by AMSCs is independent of major histocompatibility complex (MHC) class I expression or MHC compatibility. As AMSCs appear to have immunosuppressive properties, AMSCs may be a useful source of biological suppressor cells for the control of GVHD in humans.
RESUMO
To elucidate the genetic events that occur during the development of OSCC, the present study established a model of oral malignancy using a mouse oral squamous cell carcinoma (OSCC) Sq-1979 cell line. Sq-1979 cells were implanted into syngeneic C3H mice. Subsequently, 233 cells and metastatic sub-clones (L cells) from primary OSCC, as well as the metastasized lymph node tissues of Sq-1979-implanted mice were established. Compared with parental Sq-1979 and 233 cells, the majority of L cells exhibited a higher proliferation rate and transplantability, and conferred a lower survival rate on the implanted mice. To investigate the genetic background of L cells, preferentially expressed genes in L cells were identified by cDNA microarray and reverse transcription-polymerase chain reaction analyses. The expression of FYN-binding protein (Fyb), solute carrier family 16 member 13 (Slc16a13), keratin 7, transmembrane portion 173 and Slc44a3 mRNAs was significantly elevated in L cells compared with that in Sq1979 and 233 cells. The mRNA expression was also evaluated in human OSCC and leukoplakia (LP) tissues. Among the 5 aforementioned mRNAs, the expression of FYB and SLC16A13 was significantly higher in OSCC than in LP tissues. Furthermore, the expression of SLC16A13 mRNA was significantly elevated in highly invasive OSCCs, which were classified as grades 3 and 4 by the Yamamoto-Kohama (YK) classification of invasion, compared with those in lower grades (YK-1 and -2). The model proposed in the present study could thus describe essential marker genes for the diagnosis of oral malignancies.
RESUMO
To evaluate systemic immunity associated with tumor growth limited to a subcutaneous site versus growth proceeding at multiple tumor sites, we established syngeneic mouse subcutaneous and pulmonary tumor models by local subcutaneous and intravenous injection of colon carcinoma CT26 cells. We found that splenic myeloid-derived suppressor cell (MDSC) levels were significantly increased in the subcutaneous tumor model but not in the pulmonary tumor model. Furthermore, both CD4+ and CD8+ T cells as well as CD4+ Foxp3+ T cells were significantly decreased in the subcutaneous tumor model and were largely unchanged in the pulmonary tumor model. In addition, the subcutaneous model, but not the pulmonary model, displayed a Th1 polarization bias. This bias was characterized by decreased IL-4, IL-9, and IL-10 production, whereas the pulmonary model displayed increased production of IL-10. These results suggest that the mode of tumor development has differential effects on systemic immunity that may, in turn, influence approaches to treatment of cancer patients.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Neoplasias Pulmonares/imunologia , Células Supressoras Mieloides/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Feminino , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-9/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias/métodos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Tela Subcutânea/imunologia , Tela Subcutânea/patologia , Células Th1/imunologia , Transplante Isogênico/métodosRESUMO
Myeloid derived suppressor cells (MDSCs) localize to hematopoietic organs and peripheral blood during inflammation or tumor tissues and lymph nodes in the presence of a tumor. However, whether there are differences in MDSCs found in the primary tumor and metastases is unknown. In the present study, we established a cell line of metastasized tumor cells to a lymph node, L5-11, which were derived from the Sq-1979 mouse buccal mucosa squamous cell carcinoma cell line. We then analyzed tumor immunogenicity, especially with regard to MDSCs, to clarify the differences between the primary tumor and metastases, using an isogenic heterotopic tumor transplantation model. Our data showed that the population of intratumoral MDSCs, especially polymorphonuclear MDSCs in the lymph node metastasis model were significantly increased compared with syngeneic grafts from the primary cell line Sq-1979 after 21 days. Furthermore, we identified that the lymph node metastasis cell line had increased expression of genes that promote the expansion of MDSCs, tumor growth and metastasis. Hence, these data suggest that tumor immunosuppression can occur via activation of MDSCs. However, further examination is required to clarify whether all or a subset of these factors from the lymph node metastasis tumor cells are required to induce intratumoral MDSCs.