RESUMO
Safe drinking water and a clean living environment are essential for good health. However, the extensive and growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange, rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of potable water and environmental challenges. This trend poses a serious threat to human society, sustainable global development, and marine ecosystems. Consequently, researchers are exploring more advanced methods beyond traditional wastewater treatment to address the removal or degradation of these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from industrial wastewater. In this study, we investigated bimetallic metal-organic frameworks (BMOFs) as a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and recyclability. This review provides a comprehensive overview of research on dye removal from wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and emerging opportunities for BMOFs in sustainable water treatment.
RESUMO
Recently, there has been a high demand for green procedures in analytical chemistry, particularly those utilizing eco-friendly solvents. In this context, three feasible derivative UV spectrophotometric methods namely, derivative ratio-zero crossing spectra (DRZCS), double divisor ratio spectra (DDRS), and successive derivative subtraction coupled with constant multiplication (SDS-CM) were developed to quantify a ternary mixture of phenol (P), 2-aminophenol (2-AP), and 4-aminophenol (4-AP) in real water samples simultaneously, using ethanol as a solvent. The established methods demonstrated a good linear range, covering 2-60 µg mL-1 for P and 2-50 µg mL-1 for 2-AP and 4-AP, in all approaches with a high correlation coefficient (R2 ≥ 0.9995). In compliance with ICH guidelines, the methods exhibited acceptable precision and accuracy, as indicated by good spike recovery with low relative standard deviations. The eco-friendliness of the UV spectrophotometric approach was assessed using analytical eco-scale (AES), analytical greenness (AGREE), and analytical greenness metrics for sample preparation (AGREEprep). These evaluations confirmed the eco-friendliness of the proposed methods in terms of solvents, energy consumption, and waste generation. The proposed procedure proved to be efficient in quantifying each component in laboratory-synthesized mixtures and real water samples, thanks to its simplicity, accuracy, sensitivity, and cost-effectiveness.
RESUMO
Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.
RESUMO
Carbon dots (CDs) are valued for their biocompatibility, easy fabrication, and distinct optical characteristics. The current study examines using whey to fabricate CDs using the hydrothermal method. When stimulated at 350 nm, the synthetic CDs emitted blue light at 423 nm and revealed a selective response to ferric ion (Fe3+) in actual samples with great sensitivity, making them a suitable probe for assessing Fe3+ ions. The produced carbon dots demonstrated great photostability, high sensitivity, and outstanding biocompatibility. The findings showed that Fe3+ ions could be quickly, sensitively, and extremely selectively detected in an aqueous solution of carbon dots, with a revealing limit of 0.409 µM in the linear range of 0-180 µM. Interestingly, this recognition boundary is far inferior to the WHO-recommended threshold of 0.77 µM. Two metric tools which were AGREE and the ComplexGAPI were also used to evaluate the method's greenness. The evaluation confirmed its superior environmental friendliness.
RESUMO
Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.