RESUMO
αß T cell receptors (αßTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αßTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αß T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αß)6γ protein complex. This direct αßTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αßTCR-peptide-MHC interactions. The crystal structure reveals how six αßTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αßTCR. Here, the αßTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αßTCR can recognise an intact foreign protein in an antibody-like manner.
Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Camundongos , Ficoeritrina/metabolismo , Ficoeritrina/química , Ativação Linfocitária/imunologia , Ligação Proteica , Cristalografia por Raios X , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Modelos MolecularesRESUMO
Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.
Assuntos
COVID-19 , Influenza Humana , Animais , Humanos , Camundongos , COVID-19/virologia , COVID-19/genética , Influenza Humana/virologia , Replicação Viral , Macrófagos/metabolismo , Macrófagos/virologia , Feminino , Masculino , SARS-CoV-2 , Pulmão/virologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Camundongos Knockout , Carga Viral , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/virologia , CriançaRESUMO
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Assuntos
Coinfecção , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vírus , Camundongos , Animais , Humanos , Influenza Humana/patologia , Linfócitos T CD8-Positivos , Coinfecção/patologia , Receptores de Antígenos de Linfócitos T , Pulmão/patologiaRESUMO
Background: In-depth immunogenicity studies of tixagevimab-cilgavimab (T-C) are lacking, including following breakthrough coronavirus disease 2019 (COVID-19) in vaccinated patients with hematologic malignancy (HM) receiving T-C as pre-exposure prophylaxis. Methods: We performed a prospective, observational cohort study and detailed immunological analyses of 93 patients with HM who received T-C from May 2022, with and without breakthrough infection, during a follow-up period of 6 months and dominant Omicron BA.5 variant. Results: In 93 patients who received T-C, there was an increase in Omicron BA.4/5 receptor-binding domain (RBD) immunoglobulin G (IgG) antibody titers that persisted for 6 months and was equivalent to 3-dose-vaccinated uninfected healthy controls at 1 month postinjection. Omicron BA.4/5 neutralizing antibody was lower in patients receiving B-cell-depleting therapy within 12 months despite receipt of T-C. COVID-19 vaccination during T-C treatment did not incrementally improve RBD or neutralizing antibody levels. In 16 patients with predominantly mild breakthrough infection, no change in serum neutralization of Omicron BA.4/5 postinfection was detected. Activation-induced marker assay revealed an increase in CD4+ (but not CD8+) T cells post infection, comparable to previously infected healthy controls. Conclusions: Our study provides proof-of-principle for a pre-exposure prophylaxis strategy and highlights the importance of humoral and cellular immunity post-breakthrough COVID-19 in vaccinated patients with HM.
RESUMO
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Austrália , Imunoglobulina G , Povos Indígenas , Imunidade , Anticorpos AntiviraisRESUMO
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Austrália/epidemiologia , SARS-CoV-2 , Imunoglobulina G , Anticorpos Neutralizantes , Imunidade , Anticorpos Antivirais , VacinaçãoRESUMO
Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
Assuntos
COVID-19 , Gravidez , Feminino , Humanos , SARS-CoV-2 , Células Matadoras Naturais , Linfócitos T CD8-Positivos , AnticorposRESUMO
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (â¼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
Assuntos
COVID-19 , Neoplasias Hematológicas , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Linfócitos T CD8-PositivosRESUMO
Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.
RESUMO
Central nervous system virus infections are a major cause of morbidity and mortality worldwide and a significant global public health concern. As in many tissues, inflammation and immune responses in the brain, despite their protective roles, can also be harmful. Control of brain inflammation is important in many neurological diseases from encephalitis to multiple sclerosis and neurogenerative disease. The suppressors of cytokine signaling (SOCS) proteins are a key mechanism controlling inflammatory and immune responses across all tissues including the brain. Using a mouse model system, we demonstrate that lack of SOCS4 results in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to wild-type mice, SOCS4-deficient mice showed accelerated clearance of virus from the brain, lower levels of persisting viral RNA in the brain, increased neuroinflammation and more severe neuropathology. We conclude that, in the mouse brain, SOCS4 is a vital regulator of antiviral immunity that mediates the critical balance between immunopathology and virus persistence.
Assuntos
Citocinas , Encefalite , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Citocinas/imunologia , Encefalite/imunologia , Encefalite/virologia , Imunidade , Vírus da Floresta de Semliki , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismoRESUMO
CNS viral infections are one of the major causes of morbidity and mortality worldwide and a significant global public health concern. Uncontrolled inflammation and immune responses in the brain, despite their protective roles, can also be harmful. The suppressor of cytokine signalling (SOCS) proteins is one of the key mechanisms controlling inflammatory and immune responses across all tissues including the brain. SOCS5 is highly expressed in the brain but there is little understanding of its role in the CNS. Using a mouse model of encephalitis, we demonstrate that lack of SOCS5 results in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to wild-type mice, SOCS5-deficient mice had greater weight loss, dysregulated cytokine production and increased neuroinflammatory infiltrates composed predominantly of CD11b+ cells. We conclude that in the brain, SOCS5 is a vital regulator of anti-viral immunity that mediates the critical balance between immunopathology and virus persistence.
Assuntos
Infecções por Alphavirus , Citocinas , Animais , Camundongos , Citocinas/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genéticaRESUMO
Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNß prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNß. Infection of mature neurons derived from IFNAR-/- mice did not make an antiviral response and replicated virus to high levels.
RESUMO
As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.
Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Humanos , Memória Imunológica , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteína da Espícula de CoronavírusRESUMO
Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.
Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunidade , Imunoglobulina G , Imunoglobulina M , Sistema Respiratório , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de CoronavírusRESUMO
BACKGROUND: As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus, whether from infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure antibody-based protection to SARS-CoV-2, ideally with rapid turnaround and without the need for laboratory-based testing. METHODS: We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibody (NAb) from whole blood, with a result that can be determined by eye or quantitatively on a small instrument. We compared our lateral flow test with the gold-standard microneutralisation assay, using samples from convalescent and vaccinated donors, as well as immunised macaques. FINDINGS: We show a high correlation between our lateral flow test with conventional neutralisation and that this test is applicable with animal samples. We also show that this assay is readily adaptable to test for protection to newly emerging SARS-CoV-2 variants, including the beta variant which revealed a marked reduction in NAb activity. Lastly, using a cohort of vaccinated humans, we demonstrate that our whole-blood test correlates closely with microneutralisation assay data (specificity 100% and sensitivity 96% at a microneutralisation cutoff of 1:40) and that fingerprick whole blood samples are sufficient for this test. INTERPRETATION: Taken together, the COVID-19 NAb-testTM device described here provides a rapid readout of NAb based protection to SARS-CoV-2 at the point of care. FUNDING: Support was received from the Victorian Operational Infrastructure Support Program and the Australian Government Department of Health. This work was supported by grants from the Department of Health and Human Services of the Victorian State Government; the ARC (CE140100011, CE140100036), the NHMRC (1113293, 2002317 and 1116530), and Medical Research Future Fund Awards (2005544, 2002073, 2002132). Individual researchers were supported by an NHMRC Emerging Leadership Level 1 Investigator Grants (1194036), NHMRC APPRISE Research Fellowship (1116530), NHMRC Leadership Investigator Grant (1173871), NHMRC Principal Research Fellowship (1137285), NHMRC Investigator Grants (1177174 and 1174555) and NHMRC Senior Principal Research Fellowships (1117766 and 1136322). Grateful support was also received from the A2 Milk Company and the Jack Ma Foundation.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia , Animais , Austrália , Vacinas contra COVID-19/imunologia , Humanos , Macaca/imunologia , Testes de Neutralização , VacinaçãoRESUMO
We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.
RESUMO
OBJECTIVES: Although co-expression of CD38 and HLA-DR reflects T-cell activation during viral infections, high and prolonged CD38+HLA-DR+ expression is associated with severe disease. To date, the mechanism underpinning expression of CD38+HLA-DR+ is poorly understood. METHODS: We used mouse models of influenza A/H9N2, A/H7N9 and A/H3N2 infection to investigate mechanisms underpinning CD38+MHC-II+ phenotype on CD8+ T cells. To further understand MHC-II trogocytosis on murine CD8+ T cells as well as the significance behind the scenario, we used adoptively transferred transgenic OT-I CD8+ T cells and A/H3N2-SIINKEKL infection. RESULTS: Analysis of influenza-specific immunodominant DbNP366 +CD8+ T-cell responses showed that CD38+MHC-II+ co-expression was detected on both virus-specific and bystander CD8+ T cells, with increased numbers of both CD38+MHC-II+CD8+ T-cell populations observed in immune organs including the site of infection during severe viral challenge. OT-I cells adoptively transferred into MHC-II-/- mice had no MHC-II after infection, suggesting that MHC-II was acquired via trogocytosis. The detection of CD19 on CD38+MHC-II+ OT-I cells supports the proposition that MHC-II was acquired by trogocytosis sourced from B cells. Co-expression of CD38+MHC-II+ on CD8+ T cells was needed for optimal recall following secondary infection. CONCLUSIONS: Overall, our study demonstrates that both virus-specific and bystander CD38+MHC-II+ CD8+ T cells are recruited to the site of infection during severe disease, and that MHC-II presence occurs via trogocytosis from antigen-presenting cells. Our findings highlight the importance of the CD38+MHC-II+ phenotype for CD8+ T-cell recall.
RESUMO
The paper presents a method and results of experimental testing of the stability of palletized cargo wrapped in stretch film in laboratory conditions and methods and parameterization of its application for proper cargo securing. Reduction of stretch film consumption is also significant for sustainable transport. It will contribute to the minimization of costs on a micro-scale (manufacturers and shippers) and a macro scale-a significant reduction in pollution of the environment and gas emissions by reducing stretch film production. The experiments have been performed following the requirements of EUMOS 40509 and 40511 standards. The proposed method of testing the stability of palletized cargo is based on tests performed on a laboratory test bench using FEF-200 sensors. The results of conducted experiments demonstrated that the selection of a proper stretch film and a cargo wrapping model could significantly reduce the risk of cargo damage through increasing cargo stabilizing forces and, at the same time, reducing stretch film consumption. The developed method can significantly reduce the cost of securing and concurrently assure required cargo security. This directly impacts the safety of all participants in the transport process in supply chains.