Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 12: e53400, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513229

RESUMO

BACKGROUND: Predicting the bed occupancy rate (BOR) is essential for efficient hospital resource management, long-term budget planning, and patient care planning. Although macro-level BOR prediction for the entire hospital is crucial, predicting occupancy at a detailed level, such as specific wards and rooms, is more practical and useful for hospital scheduling. OBJECTIVE: The aim of this study was to develop a web-based support tool that allows hospital administrators to grasp the BOR for each ward and room according to different time periods. METHODS: We trained time-series models based on long short-term memory (LSTM) using individual bed data aggregated hourly each day to predict the BOR for each ward and room in the hospital. Ward training involved 2 models with 7- and 30-day time windows, and room training involved models with 3- and 7-day time windows for shorter-term planning. To further improve prediction performance, we added 2 models trained by concatenating dynamic data with static data representing room-specific details. RESULTS: We confirmed the results of a total of 12 models using bidirectional long short-term memory (Bi-LSTM) and LSTM, and the model based on Bi-LSTM showed better performance. The ward-level prediction model had a mean absolute error (MAE) of 0.067, mean square error (MSE) of 0.009, root mean square error (RMSE) of 0.094, and R2 score of 0.544. Among the room-level prediction models, the model that combined static data exhibited superior performance, with a MAE of 0.129, MSE of 0.050, RMSE of 0.227, and R2 score of 0.600. Model results can be displayed on an electronic dashboard for easy access via the web. CONCLUSIONS: We have proposed predictive BOR models for individual wards and rooms that demonstrate high performance. The results can be visualized through a web-based dashboard, aiding hospital administrators in bed operation planning. This contributes to resource optimization and the reduction of hospital resource use.

2.
Heliyon ; 10(2): e24620, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304832

RESUMO

Background and Objective: Although interest in predicting drug-drug interactions is growing, many predictions are not verified by real-world data. This study aimed to confirm whether predicted polypharmacy side effects using public data also occur in data from actual patients. Methods: We utilized a deep learning-based polypharmacy side effects prediction model to identify cefpodoxime-chlorpheniramine-lung edema combination with a high prediction score and a significant patient population. The retrospective study analyzed patients over 18 years old who were admitted to the Asan medical center between January 2000 and December 2020 and took cefpodoxime or chlorpheniramine orally. The three groups, cefpodoxime-treated, chlorpheniramine-treated, and cefpodoxime & chlorpheniramine-treated were compared using inverse probability of treatment weighting (IPTW) to balance them. Differences between the three groups were analyzed using the Kaplan-Meier method and Cox proportional hazards model. Results: The study population comprised 54,043 patients with a history of taking cefpodoxime, 203,897 patients with a history of taking chlorpheniramine, and 1,628 patients with a history of taking cefpodoxime and chlorpheniramine simultaneously. After adjustment, the 1-year cumulative incidence of lung edema in the patient group that took cefpodoxime and chlorpheniramine simultaneously was significantly higher than in the patient groups that took cefpodoxime or chlorpheniramine only (p=0.001). Patients taking cefpodoxime and chlorpheniramine together had an increased risk of lung edema compared to those taking cefpodoxime alone [hazard ratio (HR) 2.10, 95% CI 1.26-3.52, p<0.005] and those taking chlorpheniramine alone, which also increased the risk of lung edema (HR 1.64, 95% CI 0.99-2.69, p=0.05). Conclusions: Validation of polypharmacy side effect predictions with real-world data can aid patient and clinician decision-making before conducting randomized controlled trials. Simultaneous use of cefpodoxime and chlorpheniramine was associated with a higher long-term risk of lung edema compared to the use of cefpodoxime or chlorpheniramine alone.

4.
Comput Biol Med ; 168: 107738, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995536

RESUMO

Electronic medical records(EMR) have considerable potential to advance healthcare technologies, including medical AI. Nevertheless, due to the privacy issues associated with the sharing of patient's personal information, it is difficult to sufficiently utilize them. Generative models based on deep learning can solve this problem by creating synthetic data similar to real patient data. However, the data used for training these deep learning models run into the risk of getting leaked because of malicious attacks. This means that traditional deep learning-based generative models cannot completely solve the privacy issues. Therefore, we suggested a method to prevent the leakage of training data by protecting the model from malicious attacks using local differential privacy(LDP). Our method was evaluated in terms of utility and privacy. Experimental results demonstrated that the proposed method can generate medical data with reasonable performance while protecting training data from malicious attacks.


Assuntos
Registros Eletrônicos de Saúde , Privacidade , Humanos , Instalações de Saúde
5.
Health Care Manag Sci ; 27(1): 114-129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921927

RESUMO

Overcrowding of emergency departments is a global concern, leading to numerous negative consequences. This study aimed to develop a useful and inexpensive tool derived from electronic medical records that supports clinical decision-making and can be easily utilized by emergency department physicians. We presented machine learning models that predicted the likelihood of hospitalizations within 24 hours and estimated waiting times. Moreover, we revealed the enhanced performance of these machine learning models compared to existing models by incorporating unstructured text data. Among several evaluated models, the extreme gradient boosting model that incorporated text data yielded the best performance. This model achieved an area under the receiver operating characteristic curve score of 0.922 and an area under the precision-recall curve score of 0.687. The mean absolute error revealed a difference of approximately 3 hours. Using this model, we classified the probability of patients not being admitted within 24 hours as Low, Medium, or High and identified important variables influencing this classification through explainable artificial intelligence. The model results are readily displayed on an electronic dashboard to support the decision-making of emergency department physicians and alleviate overcrowding, thereby resulting in socioeconomic benefits for medical facilities.


Assuntos
Inteligência Artificial , Listas de Espera , Humanos , Hospitalização , Serviço Hospitalar de Emergência , Aprendizado de Máquina , Estudos Retrospectivos
6.
Sci Rep ; 13(1): 22461, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105280

RESUMO

As warfarin has a narrow therapeutic window and obvious response variability among individuals, it is difficult to rapidly determine personalized warfarin dosage. Adverse drug events(ADE) resulting from warfarin overdose can be critical, so that typically physicians adjust the warfarin dosage through the INR monitoring twice a week when starting warfarin. Our study aimed to develop machine learning (ML) models that predicts the discharge dosage of warfarin as the initial warfarin dosage using clinical data derived from electronic medical records within 2 days of hospitalization. During this retrospective study, adult patients who were prescribed warfarin at Asan Medical Center (AMC) between January 1, 2018, and October 31, 2020, were recruited as a model development cohort (n = 3168). Additionally, we created an external validation dataset (n = 891) from a Medical Information Mart for Intensive Care III (MIMIC-III). Variables for a model prediction were selected based on the clinical rationale that turned out to be associated with warfarin dosage, such as bleeding. The discharge dosage of warfarin was used the study outcome, because we assumed that patients achieved target INR at discharge. In this study, four ML models that predicted the warfarin discharge dosage were developed. We evaluated the model performance using the mean absolute error (MAE) and prediction accuracy. Finally, we compared the accuracy of the predictions of our models and the predictions of physicians for 40 data point to verify a clinical relevance of the models. The MAEs obtained using the internal validation set were as follows: XGBoost, 0.9; artificial neural network, 0.9; random forest, 1.0; linear regression, 1.0; and physicians, 1.3. As a result, our models had better prediction accuracy than the physicians, who have difficulty determining the warfarin discharge dosage using clinical information obtained within 2 days of hospitalization. We not only conducted the internal validation but also external validation. In conclusion, our ML model could help physicians predict the warfarin discharge dosage as the initial warfarin dosage from Korean population. However, conducting a successfully external validation in a further work is required for the application of the models.


Assuntos
Alta do Paciente , Varfarina , Adulto , Humanos , Varfarina/efeitos adversos , Estudos Retrospectivos , Pacientes Internados , Anticoagulantes/efeitos adversos , Aprendizado de Máquina
7.
Sci Rep ; 12(1): 21152, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477457

RESUMO

Graph representation learning is a method for introducing how to effectively construct and learn patient embeddings using electronic medical records. Adapting the integration will support and advance the previous methods to predict the prognosis of patients in network models. This study aims to address the challenge of implementing a complex and highly heterogeneous dataset, including the following: (1) demonstrating how to build a multi-attributed and multi-relational graph model (2) and applying a downstream disease prediction task of a patient's prognosis using the HinSAGE algorithm. We present a bipartite graph schema and a graph database construction in detail. The first constructed graph database illustrates a query of a predictive network that provides analytical insights using a graph representation of a patient's journey. Moreover, we demonstrate an alternative bipartite model where we apply the model to the HinSAGE to perform the link prediction task for predicting the event occurrence. Consequently, the performance evaluation indicated that our heterogeneous graph model was successfully predicted as a baseline model. Overall, our graph database successfully demonstrated efficient real-time query performance and showed HinSAGE implementation to predict cardiovascular disease event outcomes on supervised link prediction learning.


Assuntos
Registros Eletrônicos de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA