Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025963

RESUMO

Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.

2.
Nat Commun ; 15(1): 6222, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043633

RESUMO

Chimeric antigen receptor (CAR) T-cells targeting Fibroblast Growth Factor Receptor 4 (FGFR4), a highly expressed surface tyrosine receptor in rhabdomyosarcoma (RMS), are already in the clinical phase of development, but tumour heterogeneity and suboptimal activation might hamper their potency. Here we report an optimization strategy of the co-stimulatory and targeting properties of a FGFR4 CAR. We replace the CD8 hinge and transmembrane domain and the 4-1BB co-stimulatory domain with those of CD28. The resulting CARs display enhanced anti-tumor activity in several RMS xenograft models except for an aggressive tumour cell line, RMS559. By searching for a direct target of the RMS core-regulatory transcription factor MYOD1, we identify another surface protein, CD276, as a potential target. Bicistronic CARs (BiCisCAR) targeting both FGFR4 and CD276, containing two distinct co-stimulatory domains, have superior prolonged persistent and invigorated anti-tumor activities compared to the optimized FGFR4-specific CAR and the other BiCisCAR with the same 4-1BB co-stimulatory domain. Our study thus lays down the proof-of-principle for a CAR T-cell therapy targeting both FGFR4 and CD276 in RMS.


Assuntos
Antígenos B7 , Imunoterapia Adotiva , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptores de Antígenos Quiméricos , Rabdomiossarcoma , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Rabdomiossarcoma/terapia , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/genética , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Camundongos , Imunoterapia Adotiva/métodos , Antígenos B7/metabolismo , Antígenos B7/imunologia , Antígenos B7/genética , Proteína MyoD/metabolismo , Proteína MyoD/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Criança , Feminino , Camundongos SCID , Camundongos Endogâmicos NOD
3.
Sci Adv ; 10(27): eadj7402, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959321

RESUMO

The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response.


Assuntos
Bactérias , RNA-Seq , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , RNA-Seq/métodos , Bactérias/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Análise de Sequência de RNA/métodos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Biologia Computacional/métodos , RNA Bacteriano/genética , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/genética , Microbiota , Análise da Expressão Gênica de Célula Única
4.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912579

RESUMO

Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.


Assuntos
Linfócitos T CD8-Positivos , Imunidade Inata , Macaca mulatta , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a SAIDS/imunologia , Imunidade Inata/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Antivirais/imunologia , Masculino , Vacinas Atenuadas/imunologia
5.
Circ Res ; 135(2): e4-e23, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860377

RESUMO

BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Macrófagos , Placa Aterosclerótica , Receptores de Superfície Celular , Humanos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Animais , Antígenos CD/metabolismo , Antígenos CD/genética , Macrófagos/metabolismo , Macrófagos/patologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Camundongos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Apoptose , Feminino , Transição Epitelial-Mesenquimal , Vasos Coronários/patologia , Vasos Coronários/metabolismo
6.
Cell Rep ; 43(4): 114072, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581680

RESUMO

Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.


Assuntos
Proteína AIRE , Tolerância Central , Células Epiteliais , Proteínas do Tecido Nervoso , Timo , Fatores de Transcrição , Animais , Células Epiteliais/metabolismo , Timo/citologia , Timo/metabolismo , Timo/imunologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tolerância a Antígenos Próprios
7.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466627

RESUMO

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Assuntos
Timócitos , Fatores de Transcrição , Camundongos , Animais , Timócitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Timo/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo
8.
PLoS One ; 18(12): e0295382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039307

RESUMO

BACKGROUND: Physiotherapists' play a key role in the management of chronic pain, and as part of the National Institute for Health and Care Excellence (NICE) guidelines, prescribe exercise to support patients with chronic pain. However, there is very limited evidence supporting physiotherapists on what type of exercise or dose of exercise should be prescribed. Physiotherapists' therefore have more onus on their ability to clinically reason how to prescribe exercise. At present, there is no research investigating how physiotherapists' working with patients that have chronic pain, clinically reason when prescribing exercise. This study proposes to investigate how physiotherapists experienced in pain management prescribe exercise, to understand what the key influences are on their reasoning, and how these impact on clinical practice. METHODS: This will be a qualitative study, utilising semi-structured individual interviews. Participants will be Health and Care Professions Council registered physiotherapists, working predominantly with patients that have chronic pain. Recruitment will focus on physiotherapists working within the United Kingdom (UK). Up to twenty participants will be recruited. The study, including the interview guide, will be supported by a steering group consisting of academics and physiotherapists experienced in chronic pain. The data will be analysed using framework analysis. RESULTS: The study will be reported using the COnsolidated criteria for REporting Qualitative research (COREQ) guidelines. The findings of the study will be disseminated through publication in a peer reviewed journal. CONCLUSION: This study will provide novel insight into how physiotherapists experienced working with and managing chronic pain patients, prescribe exercise, and will gain new insight into clinical practice to help inform future research and education.


Assuntos
Dor Crônica , Fisioterapeutas , Humanos , Dor Crônica/terapia , Pesquisa Qualitativa , Exercício Físico , Terapia por Exercício/métodos
9.
Cancer Cell ; 41(12): 2154-2165.e5, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38039963

RESUMO

Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Estudos Prospectivos , Antígenos de Neoplasias , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T
10.
Sci Immunol ; 8(89): eadi9066, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948511

RESUMO

How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.


Assuntos
Linfócitos T CD4-Positivos , Fatores de Transcrição , Animais , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873155

RESUMO

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.

12.
Sci Adv ; 9(30): eadg9845, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494434

RESUMO

T cell receptor (TCR)-engineered T cell therapy using high-affinity TCRs is a promising treatment modality for cancer. Discovery of high-affinity TCRs especially against self-antigens can require approaches that circumvent central tolerance, which may increase the risk of cross-reactivity. Despite the potential for toxicity, no standardized approach to screen cross-reactivity has been established in the context of preclinical safety evaluation. Here, we describe a practical framework to prospectively detect clinically prohibitive cross-reactivity of therapeutic TCR candidates. Cross-reactivity screening consisted of multifaceted series of assays including assessment of p-MHC tetramer binding, cell line recognition, and reactivity against candidate peptide libraries. Peptide libraries were generated using conventional contact residue motif-guided search, amino acid substitution matrix-based search unguided by motif information, and combinatorial peptide library scan-guided search. We demonstrate the additive nature of a layered approach, which efficiently identifies unsafe cross-reactivity including one undetected by conventional motif-guided search. These findings have important implications for the safe development of TCR-based therapies.


Assuntos
Biblioteca de Peptídeos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37402364

RESUMO

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiologia , Celulite (Flegmão)/metabolismo , Macrófagos/metabolismo , Matriz Extracelular
14.
Blood Adv ; 7(15): 4218-4232, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36607839

RESUMO

CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos T , Criança , Humanos , Epigenoma , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antígenos CD19 , Células-Tronco Hematopoéticas
15.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631162

RESUMO

BACKGROUND: Although most patients with newly diagnosed high-risk neuroblastoma (NB) achieve remission after initial therapy, more than 50% experience late relapses caused by minimal residual disease (MRD) and succumb to their cancer. Therapeutic strategies to target MRD may benefit these children. We developed a new chimeric antigen receptor (CAR) targeting glypican-2 (GPC2) and conducted iterative preclinical engineering of the CAR structure to maximize its anti-tumor efficacy before clinical translation. METHODS: We evaluated different GPC2-CAR constructs by measuring the CAR activity in vitro. NOD-SCID mice engrafted orthotopically with human NB cell lines or patient-derived xenografts and treated with human CAR T cells served as in vivo models. Mechanistic studies were performed using single-cell RNA-sequencing. RESULTS: Applying stringent in vitro assays and orthotopic in vivo NB models, we demonstrated that our single-chain variable fragment, CT3, integrated into a CAR vector with a CD28 hinge, CD28 transmembrane, and 4-1BB co-stimulatory domain (CT3.28H.BBζ) elicits the best preclinical anti-NB activity compared with other tested CAR constructs. This enhanced activity was associated with an enrichment of CD8+ effector T cells in the tumor-microenvironment and upregulation of several effector molecules such as GNLY, GZMB, ZNF683, and HMGN2. Finally, we also showed that the CT3.28H.BBζ CAR we developed was more potent than a recently clinically tested GD2-targeted CAR to control NB growth in vivo. CONCLUSION: Given the robust preclinical activity of CT3.28H.BBζ, these results form a promising basis for further clinical testing in children with NB.


Assuntos
Glipicanas , Neuroblastoma , Receptores de Antígenos Quiméricos , Animais , Criança , Humanos , Camundongos , Antígenos CD28 , Gangliosídeos , Glipicanas/imunologia , Glipicanas/uso terapêutico , Imunoterapia Adotiva/métodos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/metabolismo , Neuroblastoma/terapia , Receptores de Antígenos Quiméricos/genética
16.
Nat Commun ; 13(1): 7303, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435799

RESUMO

White adipose tissue browning is a key metabolic process controlled by epigenetic factors that facilitate changes in gene expression leading to altered cell identity. We find that male mice lacking the nucleosome binding proteins HMGN1 and HMGN2 (DKO mice), show decreased body weight and inguinal WAT mass, but elevated food intake, WAT browning and energy expenditure. DKO white preadipocytes show reduced chromatin accessibility and lower FRA2 and JUN binding at Pparγ and Pparα promoters. White preadipocytes and mouse embryonic fibroblasts from DKO mice show enhanced rate of differentiation into brown-like adipocytes. Differentiating DKO adipocytes show reduced H3K27ac levels at white adipocyte-specific enhancers but elevated H3K27ac levels at brown adipocyte-specific enhancers, suggesting a faster rate of change in cell identity, from white to brown-like adipocytes. Thus, HMGN proteins function as epigenetic factors that stabilize white adipocyte cell identity, thereby modulating the rate of white adipose tissue browning and affecting energy metabolism in mice.


Assuntos
Tecido Adiposo Marrom , Nucleossomos , Masculino , Animais , Camundongos , Nucleossomos/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas HMGN/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético/genética
17.
Cell Rep ; 40(12): 111363, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130486

RESUMO

Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.


Assuntos
Interferon Tipo I , Neurofibrossarcoma , Carcinogênese , Cromatina , Humanos , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , Neurofibrossarcoma/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
18.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35852863

RESUMO

Chimeric antigen receptor (CAR) T cell therapies targeting single antigens have performed poorly in clinical trials for solid tumors due to heterogenous expression of tumor-associated antigens (TAAs), limited T cell persistence, and T cell exhaustion. Here, we aimed to identify optimal CARs against glypican 2 (GPC2) or CD276 (B7-H3), which were highly but heterogeneously expressed in neuroblastoma (NB), a lethal extracranial solid tumor of childhood. First, we examined CAR T cell expansion in the presence of targets by digital droplet PCR. Next, using pooled competitive optimization of CAR by cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), termed P-COCC, we simultaneously analyzed protein and transcriptome expression of CAR T cells to identify high-activity CARs. Finally, we performed cytotoxicity assays to identify the most effective CAR against each target and combined the CARs into a bicistronic "OR" CAR (BiCisCAR). BiCisCAR T cells effectively eliminated tumor cells expressing GPC2 or CD276. Furthermore, the BiCisCAR T cells demonstrated prolonged persistence and resistance to exhaustion when compared with CARs targeting a single antigen. This study illustrated that targeting multiple TAAs with BiCisCAR may overcome heterogenous expression of target antigens in solid tumors and identified a potent, clinically relevant CAR against NB. Moreover, our multimodal approach integrating competitive expansion, P-COCC, and cytotoxicity assays is an effective strategy to identify potent CARs among a pool of candidates.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias/genética , Antígenos B7 , Linhagem Celular Tumoral , Glipicanas/genética , Humanos , Imunoterapia Adotiva , Neuroblastoma/genética , Neuroblastoma/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Elife ; 112022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829695

RESUMO

CD4+ T cells are critical orchestrators of immune responses against a large variety of pathogens, including viruses. While multiple CD4+ T cell subtypes and their key transcriptional regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune responses remain poorly defined. Using single-cell transcriptomics, we characterized the diversity of CD4+ T cells responding to self-resolving and chronic viral infections in mice. We built a comprehensive map of virus-specific CD4+ T cells and their evolution over time, and identified six major cell states consistently observed in acute and chronic infections. During the course of acute infections, T cell composition progressively changed from effector to memory states, with subtype-specific gene modules and kinetics. Conversely, in persistent infections T cells acquired distinct, chronicity-associated programs. By single-cell T cell receptor (TCR) analysis, we characterized the clonal structure of virus-specific CD4+ T cells across individuals. Virus-specific CD4+ T cell responses were essentially private across individuals and most T cells differentiated into both Tfh and Th1 subtypes irrespective of their TCR. Finally, we showed that our CD4+ T cell map can be used as a reference to accurately interpret cell states in external single-cell datasets across tissues and disease models. Overall, this study describes a previously unappreciated level of adaptation of the transcriptional states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T cell analysis.


Assuntos
Linfócitos T , Viroses , Animais , Linfócitos T CD4-Positivos , Camundongos , Receptores de Antígenos de Linfócitos T/genética
20.
Clin Cancer Res ; 28(17): 3785-3796, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802683

RESUMO

PURPOSE: Half of the patients with high-risk neuroblastoma who receive GD2-targeted mAb do not achieve long-term remissions. Recently, the antibody hu14.18 has been linked to IL2 (hu14.18-IL2) to enhance its efficacy and shown promising preclinical and clinical activity. We developed two new immunocytokines (IC) by linking two other γc cytokines, IL15 and IL21, to hu14.18. The purpose of this study was to compare hu14.18-IL15 and -IL21 with hu14.18-IL2 in their ability to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against neuroblastoma. EXPERIMENTAL DESIGN: We assessed ADCC of hu14.18-IL15 and -IL2 (human cytokines, cross-reactive to mouse) against GD2low and GD2high neuroblastoma cell lines in vitro. T-cell-deficient mice with orthotopic patient-derived xenografts (PDX) and immunocompetent mice with transplantable orthotopic neuroblastoma were used to test all three ICs, including hu14.18-IL21 (murine IL21, not cross-reactive to human). Mechanistic studies were performed using single-cell RNA-sequencing (scRNA-seq). RESULTS: hu14.18-IL15 and hu14.18-IL2 mediated equivalent in vitro ADCC by human NK cells. When combined with chemotherapy, all three ICs similarly controlled the growth of PDXs in nude mice with murine NK effector cells. However, hu14.18-IL15 and -IL21 outperformed hu14.18-IL2 in immunocompetent mice with syngeneic neuroblastoma, inducing complete tumor regressions and extending survival. scRNA-seq data revealed an increase in CD8+ T cells and M1 tumor-associated macrophages and decreased regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment. CONCLUSIONS: Hu14.18-IL15 and Hu14.18-IL21 exhibit robust preclinical activity, warranting further consideration for clinical testing in patients with GD2-expressing neuroblastoma.


Assuntos
Interleucina-2 , Neuroblastoma , Animais , Humanos , Interleucina-15/genética , Interleucina-15/uso terapêutico , Interleucinas , Camundongos , Camundongos Nus , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...