Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Shock ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39178221

RESUMO

ABSTRACT: Severe burn injuries induce acute and chronic susceptibility to infections, which is largely attributed to a hyper-pro-inflammatory response followed by a chronic anti-inflammatory response. Concurrent inhalation injury (B + I) causes airway inflammation. Pulmonary macrophages and neutrophils are "hyperactive" with increased reactive oxygen (ROS) and nitrogen species (RONS) activity, but are unable to clear infection, causing airway damage upon activation. Nuclear Factor-Erythroid-2-Related Factor (NRF2) is a critical immunomodulatory component that induces compensatory anti-inflammatory pathways when activated. On the other hand, inhibition of Mammalian Target of Rapamycin (mTOR) reduces pro-inflammatory responses. The therapeutic use of these targets is limited, as known modulators of these pathways are insoluble in saline and require long-term administration. A biocompatible NRF2 agonist (CDDO) and rapamycin (RAPA) poly (lactic-co-glycolic acid) (PLGA) microparticles (MP) were created, which we hypothesized would reduce the acute hyper-inflammatory response in our murine model of B + I injury. BI-injured mice that received CDDO-MP or both CDDO-MP and RAPA-MP (Combo-MP) an hour after injury displayed significant changes in the activation patterns of pulmonary and systemic immune genes and their associated immune pathways 48 h after injury. For example, mice treated with Combo-MP showed a significant reduction in inflammatory gene expression compared to untreated or CDDO-MP-treated mice. We also hypothesized that Combo-MP therapy would acutely decrease bacterial susceptibility after injury. BI-injured mice that received Combo-MP an hour after injury, inoculated 48 h later with Pseudomonas aeruginosa (PAO1), and sacrificed 48 h after infection, displayed significantly decreased bacterial counts in the lungs and liver versus untreated B + I mice. This reduction in infection was accompanied by significantly altered lung and plasma cytokine profiles and immune reprogramming of pulmonary and splenic cells. Our findings strongly suggest that multimodal MP-based therapy holds considerable promise for reprogramming the immune response after burn injuries, particularly by mitigating the hyper-inflammatory phase, and preventing subsequent susceptibility to infection.

2.
Shock ; 59(2): 300-310, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730842

RESUMO

ABSTRACT: Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. We hypothesized that the NRF2-mediated homeostasis after burn alone and combined B-I injury is insufficient, but that pharmacological activation of the NRF2 pathway has the potential to reduce/reverse acute hyper inflammatory responses. We found that, after burn and B+I injury, Nrf2 -/- mice have higher mortality and exhibit greater pulmonary edema, vascular permeability, and exacerbated pulmonary and systemic proinflammatory responses compared with injured wild-type (WT) controls. Transcriptome analysis of lung tissue revealed specific Nrf2 -dependent dysregulated immune pathways after injury. In WT mice, we observed that B+I injury induces cytosolic, but not nuclear, accumulation of NRF2 protein in the lung microenvironment compared with sham-injured controls. Bardoxolone methyl (CDDO-Me)-containing microparticles (CDDO-MPs) were developed that allow for dilution in saline and stable release of CDDO-Me. When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.


Assuntos
Queimaduras , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Inflamação/metabolismo , Pulmão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...