Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364388

RESUMO

The recovery of strategic metals such as rare earth elements (REEs) requires the development of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents showed a remarkable capacity for the enhancement of binding properties. This work compares the sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR, TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH (optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g-1 (MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from low-grade cerium-bearing Egyptian ore.


Assuntos
Cério , Quitosana , Quitosana/química , Óxido Ferroso-Férrico , Adsorção , Ureia , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética
2.
Toxics ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36136455

RESUMO

The development of new materials based on biopolymers (as renewable resources) is substantial for environmental challenges in the heavy metal and radionuclide ions removal contaminations. Functionalization of chitosan with sulfonic groups was achieved for improving the uranium sorption, not only from slightly acidic leachate, but also for the underground water. The prepared hydrogel based on chitosan was characterized by series of analysis tools for structure elucidation as FTIR spectroscopy, textural properties using nitrogen adsorption method, pHPZC (by pH-drift method), thermogravimetric analysis (TGA), SEM, and SEM-EDX analyses. The sorption was performed toward uranium (VI) ions for adjustment of sorption performances. The optimum sorption was performed at pH 4 (prior to the precipitation pH). The total sorption was achieved within 25 min (relatively fast kinetics) and was fitted by pseudo-first order rate equation (PFORE) and resistance to intraparticle diffusion equation (RIDE). The maximum sorption capacity was around 1.5 mmol U g-1. The sorption isotherms were fitted by Langmuir and Sips equations. Desorption was achieved using 0.3 M HCl solution and the complete desorption was performed in around 15 min of contact. The sorption desorption cycles are relatively stable during 5 cycles with limit decreasing in sorption and desorption properties (around 3 ± 0.2% and 99.8 ± 0.1%, respectively). The sorbent was used for removal of U from acid leachate solution in mining area. The sorbent showed a highly performance for U(VI) removal, which was considered as a tool material for radionuclides removing from aquatic medium.

3.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335569

RESUMO

The synthesis and developments of magnetic chitosan nanoparticles for high efficiency removal of the cadmium ions from aquatic medium are one of the most challenging techniques. Highly adsorptive composite (MCH-ATA) was produced by the reaction of chitosan with formaldehyde and amino thiazole derivative. The sorbent was characterized by FTIR, elemental analyses (EA), SEM-EDX, TEM analysis, TGA and titration (volumetric). The modified material includes high nitrogen and sulfur contents (i.e., 4.64 and 1.35 mmol g-1, respectively), compared to the pristine material (3.5 and 0 mmol g-1, respectively). The sorption was investigated for the removal of Cd(II) ions from synthetic (prepared) solution before being tested towards naturally contaminated groundwater in an industrial area. The functionalized sorbent shows a high loading capacity (1.78 mmol Cd g-1; 200 mg Cd g-1) compared to the pristine material (0.61 mmol Cd g-1; 68.57 mg Cd g-1), while removal of about 98% of Cd with capacity (6.4 mg Cd g-1) from polymetallic contaminated groundwater. The sorbent displays fast sorption kinetics compared to the non-modified composite (MCH); 30 min is sufficient for complete sorption for MCH-ATA, while 60-90 min for the MCH. PFORE fits sorption kinetics for both sorbents, whereas the Langmuir equation fits for MCH and Langmuir and Sips for MCH-ATA for sorption isotherms. The TEM analysis confirms the nano scale size, which limits the diffusion to intraparticle sorption properties. The 0.2 M HCl solution is a successful desorbing agent for the metal ions. The sorbent was applied for the removal of cadmium ions from the contaminated underground water and appears to be a promising process for metal decontamination and water treatment.

4.
Sci Total Environ ; 821: 153184, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051487

RESUMO

Urea and thiourea have been successfully deposited at the surface of silica beads (through one-pot reaction with formaldehyde) for designing new sorbents for U(VI) and Th(IV) recovery (UR/SiO2 and TUR/SiO2 composites, respectively). These materials have been characterized by FTIR, titration, elemental analysis, BET, TGA, SEM-EDX for identification of structural and chemical properties, and interpretation of binding mechanisms. Based on deprotonation of reactive groups (amine, carbonyl, or thiocarbonyl) and metal speciation, the optimum pH was ~4. Uptake kinetics was fast (equilibrium within 60-90 min). Although the kinetic profiles are fitted by the pseudo-first order rate equation, the resistance to intraparticle diffusion cannot be neglected. Sorption isotherms were fitted by Langmuir equation (maximum sorption capacities: 1-1.2 mmol g-1). Thermodynamics are also investigated showing differences between the two types of functionalized groups: exothermic for TUR/SiO2 and endothermic for UR/SiO2. Metal desorption is highly effective using 0.3-0.5 M HCl solutions: total desorption occurs within 30-60 min; sorption/desorption properties are remarkably stable for at least 5 cycles. The sorbents have marked preference for U(VI) and Th(IV) over alkali-earth and base metals at pHeq ~4.8. By preliminary precipitation steps, it is possible "cleaning" ore leachates of pegmatite ore, and recovering U(VI) and Th(IV) using functionalized silica beads. After elution and selective recovery by precipitation with oxalate (Th-cake) and alkaline (U-cake), the metals can be valorized.


Assuntos
Polímeros , Dióxido de Silício , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Polímeros/química , Dióxido de Silício/química , Tioureia , Ureia
5.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923314

RESUMO

Efficient removal of Cd(II) and Pb(II) from contaminated water is considered a fundamental point of view. Synthetic hydrogel biopolymers based on chitosan and alginate (cost-effective and eco-friendly) were successfully designed and characterized by highly efficient removal contaminants. The sorbents are characterized by FTIR, SEM-EDX, TGA, XPS analyses and textural properties which are qualified by N2 adsorption. The sorption properties are firstly investigated by the effect of pH, sorption isotherms, uptake kinetics, and selectivity from multi-metal solution with equi-molar concentration. The sorbent with 1:3 ratios (of chitosan and alginate respectively) is the most effective for metal removal (i.e., 0.81 mmol Cd g-1 and 0.41 mmol Pb g-1). Langmuir and Sip's models fitted better the adsorption isotherms compared to the Freundlich model. Uptake kinetics was well fitted by pseudo-first-order rate equation, while the saturation was achieved within 40 min. The sorbent shows good reproducibility through duplicate the experiments with negligible decreasing efficiency (>2.5%). The sorbent was applied for water treatment on samples collected from the industrial area (i.e., 653 and 203 times over the MCL for Cd(II) and Pb(II) respectively according to WHO). The concentration of Cd and Pb was drastically decreased in the effluents as pH increased with removal efficiency up to 99% for both elements at pH 5.8 and SD equivalent 1 g L-1 for 5 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...