Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13941, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886391

RESUMO

The present study focused on evaluating the antibacterial properties, radical scavenging, and photocatalytic activities of Centaurea behen-mediated silver nanoparticles (Cb-AgNPs). The formation of Cb-AgNPs was approved by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. The results showed that the obtained AgNPs have a maximum absorbance peak at 450 nm with spherical morphology and an average size of 13.03 ± 5.8 nm. The catalytic activity of the Cb-AgNPs was investigated using Safranin O (SO) solution as a cationic dye model. The Cb-AgNPs performed well in the removal of SO. The coupled physical adsorption/photocatalysis reaction calculated about 68% and 98% degradation of SO dye under solar irradiation. The Cb-AgNPs inhibited the growth of gram-negative or positive bacteria strains and had excellent DPPH radicals scavenging ability (100% in a concentration of 200 µg/ml) as well as a good effect on reducing coagulation time (at concentrations of 200 and 500 µg/mL reduced clotting time up to 3 min). Considering the fact that green synthesized Cb-AgNPs have antioxidant and antibacterial properties and have a good ability to reduce coagulation time, they can be used in wound dressings. As well as these NPs with good photocatalytic activity can be a suitable option for degrading organic pollutants.


Assuntos
Antibacterianos , Centaurea , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Química Verde/métodos , Centaurea/química , Poluentes Ambientais/química , Hemostáticos/farmacologia , Hemostáticos/química , Testes de Sensibilidade Microbiana
2.
J Biotechnol ; 354: 63-71, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724764

RESUMO

Probiotics are beneficial bacteria that have a significant effect on host health and they are widely used in preventing and treating diseases. Nowadays probiotics are present in food, drug and several commercial complement products. In recent years the use of probiotics in the nanotechnology area, especially in nanoparticle synthesis, has significantly been increased. In this review, after some introduction about probiotic and their advantages, all the nanoparticles produced by probiotics are reviewed and discussed. Furthermore, biosynthetic mechanisms of nanoparticles and its applications in cancer therapy, antibacterial and photo catalytic activities, are also discussed.


Assuntos
Nanopartículas , Probióticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Probióticos/uso terapêutico
3.
Int J Biol Macromol ; 164: 321-330, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682034

RESUMO

Alternative methods for insulin delivery instead of subcutaneous injection in diabetic patients is of great essential, and biocompatible polymers are one of the most efficient vehicles for this purpose. This research aims to investigate the capability of tragacanthic acid (TA) to bind insulin and release it under physiological conditions without alteration in the structure and conformation of insulin. Interactions between TA and insulin were studied using spectroscopic techniques and computational modeling by docking and molecular dynamics simulations. Our results demonstrate an entropy-driven spontaneous interaction between insulin and TA, where hydrogen bonds act as the main enthalpic contribution. According to our findings, the weak interaction between insulin and TA provides the basis for efficient capture and appropriate release of insulin by TA as a potential part of the insulin delivery system. In conclusion, tragacanth acid can be a proper candidate for insulin delivery.


Assuntos
Ácidos/química , Biopolímeros/química , Insulina/química , Tragacanto/química , Ácidos/isolamento & purificação , Biopolímeros/isolamento & purificação , Biopolímeros/farmacologia , Fenômenos Químicos , Insulina/isolamento & purificação , Insulina/farmacologia , Modelos Teóricos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
4.
Heliyon ; 6(5): e03975, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32455174

RESUMO

A nanomicelle based drug delivery systems is a formulation that can improve the bioavailability and dissolution rate of water-insoluble drugs. In this study, the Dextran-Poly Lactic-co-Glycolic Acid copolymer was synthesized with esterification reaction, confirmed using the fourier-transform infrared spectroscopy and nuclear magnetic resonance. The used method for nanomicelle preparation was nanoprecipitation and the critical micelle concentration value was obtained 10 µg/mL. The particle size of the nanomicelle was less than 100 nm ± 4 nm with narrow size distribution (Polydispersity index = 0.06). Hydrocortisone was loaded to this system. The obtained results for the encapsulation efficiency were 79%, and the drug release was adjusted to a first-order kinetic model with 90% release of drug within the 12 h. The MTT assay showed that even in the high concentration of micelle, the cell viability was remained higher than 90%. Considering the toxicity investigation findings, the Dextran-Poly Lactic-co-Glycolic Acid micellar systems can be suggested as a considerable drug delivery system in hydrocortisone pharmaceutical dosage forms.

5.
Adv Pharm Bull ; 9(4): 601-608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31857964

RESUMO

Purpose: The aim of this study is to prepare 5-fluorouracil (5-FU) loaded silk fibroin nanoparticles (SFNPs) and to achieve a controlled release delivery system with the high loading capacity. Methods: SFNPs with 1:1, 1:3, and 1:10 ratios of 5-FU to silk fibroin were prepared. SFNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, Scanning electron microscope (SEM), and Transmission electron microscope (TEM). Loading efficiency, in vitro release, and cell viability were studied for optimal SFNPs. Results: The ratio of 1:1 was optimal formulation with the size and polydispersity index (PDI) of 221.03 nm and 0.093 before freeze drying, and 286.7 nm and 0.154 after freeze drying by lactose, respectively. The loading efficiency and loading content of this ratio were 52.32% and 34.35%, respectively. FT-IR and XRD analysis indicated the conformational change (from random coil to ß-sheet) in the structure of nanoparticles by increasing amount of the drug, which caused the smaller size, the higher loading efficiency, and the slower release pattern. The drugloaded nanoparticles reached to the half maximal inhibitory concentration (IC50) that were comparable with free drug on MCF7 (human breast cancer) cell line. Conclusion: This study was planned to achieve a promising controlled release drug delivery system for carrying 5-FU, as a potent anticancer drug. SFNPs were found proper candidates for delivery of a hydrophilic drug such as 5-FU.

6.
Res Pharm Sci ; 14(5): 459-470, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31798663

RESUMO

This study, for the first time, tries to provide a simultaneous experimental and computational fluid dynamic (CFD) simulation investigation for production of uniform, reproducible, and stable polylactic-co-glycolic acid (PLGA) nanoparticles. CFD simulation was carried out to observe fluid flow behavior and micromixing in microfluidic system and improve our understanding about the governing fluid profile. The major objective of such effort was to provide a carrier for controlled and sustained release profile of different drugs. Different experimental parameters were optimized to obtain PLGA nanoparticles with proper size and minimized polydispersity index. The particle size, polydispersity, morphology, and stability of nanoparticles were compared. Microfluidic system provided a platform to control over the characteristics of nanoparticles. Using microfluidic system, the obtained particles were more uniform and harmonious in size, more stable, monodisperse and spherical, while particles produced by batch method were non-spherical and polydisperse. The best size and polydispersity index in the microfluidic method was obtained using 2% PLGA and 0.0625% (w/v) polyvinyl alcohol (PVA) solutions, and the flow rate ratio of 10:0.6 for PVA and PLGA solutions. CFD simulation demonstrated the high mixing intensity of about 0.99 at optimum condition in the microfluidic system, which is the possible reason for advantageous performance of this system. Altogether, the results of microfluidic-assisted method were found to be more reproducible, predictable, and controllable than batch method for producing a nanoformulation for delivery of drugs.

7.
Cell Mol Biol (Noisy-le-grand) ; 64(5): 85-90, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29729711

RESUMO

Detection and quantification of various biological and non-biological species today is one of the most important pillars of all experimental sciences, especially sciences related to human health. This may apply to a chemical in the factory wastewater or to identify a cancer cell in a person's body, it may be apply to trace a useful industrial microorganism or human or plant pathogenic microorganisms. In this regard, scientists from various sciences have always striven to design and provide tools and techniques for identifying and quantifying as accurately as possible to trace various analyte types with greater precision and specificity. Nano science, which has flourished in recent years and is nowadays widely used in all fields of science, also has a unique place in the design and manufacture of sensors and this, in addition to the new and special characteristics of nanoparticles, is due to the ability of nano-devices to penetrate into very tiny places to track the species. On the other hand, due to the high specificity of biological molecules in identifying and connecting to their receptors that have evolved over millions of years, Scientists are now trying to design hybrid devices using nano science and biology, called Nano-biosensors So that they can trace and quantify target molecules in very small amounts and in inaccessible places, such as within the organs and even the cells.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Biologia Molecular/métodos , Nanopartículas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Aptâmeros de Nucleotídeos/química , Humanos , MicroRNAs/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Biologia Molecular/instrumentação , Imagem Molecular/métodos , Nanotecnologia/instrumentação , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/análise , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...