Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Technol ; : 1-12, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37415504

RESUMO

In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 µL of IL [TMAm][OH] as a carrier and 500 µL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.

2.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903590

RESUMO

Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.


Assuntos
Líquidos Iônicos , Humanos , Ibuprofeno , Emulsões , Solventes , Ânions , Cátions
3.
Chemosphere ; 311(Pt 2): 136901, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288769

RESUMO

Ionic liquids (ILs) have been demonstrated as promising alternatives to conventional entrainers in separation of azeotropic mixtures mostly investigating phase equilibrium and process design scenarios. However, proper selection of ILs for a specific task always remains challenging. Hence a simulation tool, i.e. conductor like screening model for real solvents (COSMO-RS) was applied to address this challenge. Furthermore, screened ILs were simulated as entrainers for ethanol water separation by extractive distillation. The current study also aims to demonstrate a systematic approach to retrofit existing processes, by employing ILs as green entrainers. Screening of twenty-five (25) ILs was carried out using COSMO-RS to select suitable ILs as green entrainers based on activity coefficient, capacity and selectivity. Results illustrated that tetramethylammonium chloride ([TMAm][Cl]) due to its strong hydrogen bonding ability was found to be the best ILs entrainer. Moreover, in order to reduce the operating costs without compromising desired product purity (ethanol purity ≥99.5% in top product), the selected ILs (8 kg/h) in a mixture with ethylene glycol (72 kg/h) were simulated using Aspen plus v.11. The simulation results revealed that by combining tetramethylammonium chloride (2 kg/h) with ethylene glycol (78 kg/h) reduced 7.26 tons of CO2 emissions/year through heat integration by saving 1.49*108 kJ/year energy besides minimizing operating costs. In conclusion, the systematic selection of ILs as green entrainers in combination with ethylene glycol and then the appropriate simulation of the whole system will ultimately reduce the cost of the separation process and reduce the emission of greenhouse gases as well utilization of toxic conventional entrainers.

4.
ACS Omega ; 7(36): 32176-32183, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120055

RESUMO

In this study, we present a highly stable vegetable oil ionic liquid (IL)-based emulsion liquid membrane (VOILELM) for the removal of lactic acid from water streams. The system developed as a part of this work comprises a non-ionic surfactant Span 80, sodium hydroxide as an internal stripping agent, sunflower canola oil as a green diluent, and IL-tetramethylammonium acetate [TMAm][Ac]-as a carrier. VOILELM stability was evaluated in terms of breakage, emulsion diameter, and standalone stability. The effect of various parameters, namely, concentration of the surfactant, concentration of the internal stripping agent, concentration of the carrier, phase ratio, homogenizer speed, and homogenization time, on the VOILELM stability was studied. The results revealed that VOILELM was highly stable, with 1.34% minimum breakage, 1.16 µm emulsion diameter, and 131 min standalone stability. The optimal process parameters were 0.1 wt % Span 80, 0.1 M NaOH, 0.3 wt % IL, 0.25 phase ratio, 5000 rpm homogenizer speed, and 5 min homogenization time. At these optimized conditions, 96.08% lactic acid extraction efficiency was achieved. Thus, a highly effective VOILELM was developed, with minimal breakage and emulsion diameter and maximum stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA