RESUMO
Evidence suggests that ß-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPß and amyloid-ß, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPß, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPß and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPß and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Biomarcadores , Humanos , Marcação por Isótopo , Isoformas de Proteínas , Espectrometria de Massas em TandemRESUMO
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6's role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6-mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 µM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Assuntos
Anexina A6 , Cálcio , Animais , Anexina A6/genética , Anexina A6/metabolismo , Anexinas , Cálcio/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismoRESUMO
Dysregulation of calcium homeostasis has been hypothesized to play a role in Alzheimer's disease (AD) pathogenesis. Increased calcium levels can impair axonal transport, disrupt synaptic transmission, and ultimately lead to cell death. Given the potential role of calcium dyshomeostasis in AD, there is interest in testing the ability of already approved drugs targeting various calcium channels to affect amyloid pathology and other aspects of disease. The objective of this study was to test the effects of FDA-approved L-type calcium channel antagonist nimodipine on amyloid accumulation and dystrophic neurite formation in 5XFAD mice, a mouse model of amyloid pathology. 5XFAD transgenic mice and non-transgenic littermates were treated with vehicle or nimodipine-containing chow from two to eight months of age, then brains were harvested and amyloid pathology assessed by immunoblot and immunofluorescence microscopy analyses. Nimodipine was well tolerated and crossed the blood brain barrier, as expected, but there was no effect on Aß accumulation or on the relative amount of neuritic dystrophy, as assessed by either immunoblot, dot blot or immunofluorescence imaging of Aß42 and dystrophic neurite marker LAMP1. While we conclude that nimodipine treatment is not likely to improve amyloid pathology or decrease neuritic dystrophy in AD, it is worth noting that nimodipine did not worsen the phenotype suggesting its use is safe in AD patients.