Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 137: 112437, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38870880

RESUMO

The over-activation of tryptophan (Trp) metabolism to kynurenine (Kyn) catalyzed by Indoleamine 2,3-dioxygenase-1 (IDO1) enzyme, is one of the main metabolic pathways involved in tumor microenvironment (TME) immune escape and cancer treatment failure. The most efficient of IDO1 inhibitors is Epacadostat (EPA). Since monotherapy with single-agent IDO1 inhibitor regimen has led to an insufficient anti-tumor activity, we examined the efficacy of simultaneous treatment by Liposomal epacadostat (Lip-EPA) as a potent IDO inhibitor, in combination with docetaxel (DTX) as a complement immunogenic cell death (ICD) agent against B16F10 model. First, the in vitro combination index (CI) of epacadostat (EPA) and DTX was investigated by using the unified theory. Then, the in vivo efficacy of the combination therapy was assessed. Results indicated the synergestic cytotoxic effect of the combination on B16F10 compared to normal fibroblast cells (NIH). The immune profiling demonstrated a significant increase in the percentage of infiltrated T lymphocytes and IFN-γ release, a significant decrease in the percentage of regulatory T cells (Treg) population and the subsequent low levels of IL-10 generation in mice treated with Lip-EPA + DTX. Further, a significant tumor growth delay (TGD = 69.15 %) and an increased life span (ILS > 47.83 %) was observed with the combination strategy. Histopathology analysis revealed a remarkable increase in the Trp concentration following combination treatment, while Kyn levels significantly decreased. Results showed that the nano-liposomal form of IDO1 inhibitor in combination with chemotherapy could significantly improve the imunity response and dominate the tumor immuno-suppressive micro-environment, which merits further investigations.


Assuntos
Docetaxel , Indolamina-Pirrol 2,3,-Dioxigenase , Lipossomos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Sulfonamidas , Microambiente Tumoral , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Oximas/farmacologia , Oximas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Feminino , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Eur J Pharm Sci ; 165: 105954, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289341

RESUMO

BACKGROUND: One of the important metabolic pathways in cancer progression is tryptophan catabolism by the indoleamin-2,3-dioxygenase (IDO) enzyme, which suppresses the immune system and induces tolerance. Inhibition of IDO1 is an important therapeutic goal for immunotherapy in many cancers such as metastatic melanoma. Epacadostat (EPA) is a very strong inhibitor of IDO1, and its clinical studies are being performed in a higher clinical phase than other inhibitors. In this study, we have developed a new liposomal EPA formulation to reduce the dose, side effects, and treatment costs. METHODS: Liposomes containing EPA were formulated using a novel remote loading method. Their morphology, particle size, surface charge, total phospholipid content, and drug loading were evaluated. Validation method studies to assay of EPA were carried out according to ICHQ2B guidelines. For in-vivo study, B16F10 melanoma bearing C57BL/6 mice were treated with the free or liposomal forms of EPA, and then monitored for tumor size and survival rate. RESULTS: A validated method for EPA determination in liposomal form using UV-visible spectrophotometry was developed which was a precise, accurate and robust method. The particle size, zeta potential, and encapsulation efficacy of liposomes was 128.1 ± 1.1 nm, -16.5 ± 1 mV, and 64.9 ± 3.5, respectively. The half maximal inhibitory concentration (IC50) of liposomal EPA was 64 ng/ml that was lower than free EPA (128 ng/ml). In-vivo results also showed that tumor growth was slower in mice receiving liposomal EPA than in the group receiving free EPA. CONCLUSION: A new method was developed to load EPA into liposomes. Moreover, the use of the nanoliposomal EPA showed more efficacy than EPA in inhibiting the tumor growth in melanoma model. Therefore, it might be used in further clinical studies as a good candidate for immunotherapy alone or in combination with other treatments.


Assuntos
Lipossomos , Melanoma , Animais , Linhagem Celular Tumoral , Indolamina-Pirrol 2,3,-Dioxigenase , Camundongos , Camundongos Endogâmicos C57BL , Oximas , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...