RESUMO
Rubber trees emit a range of volatile organic compounds (VOCs), including isoprene, monoterpenes, and sesquiterpenes, as part of their natural metabolism. These VOCs can significantly influence air quality through photochemical reactions that produce ozone and secondary organic aerosols (SOAs). This study examines the impact of VOCs detected in a rubber tree plantation in Northeastern Thailand on air quality, highlighting their role in atmospheric reactions that lead to the formation of ozone and SOAs. VOCs were collected at varying heights and seasons using Tenax-TA tubes paired with an atmospheric sampler pump and identified by gas chromatography-mass spectrometry. In total, 100 VOCs were identified, including alkanes, alkenes, terpenes, aromatics, and oxygenated VOCs. Principal Coordinate Analysis (PCoA) revealed distinct seasonal VOC profiles, with hydrocarbons, peaking in summer and terpenes in the rainy season. The Linear Mixed-Effects (LME) model indicates that VOC concentrations are more influenced by seasonal changes than by sampling heights. Secondary organic aerosol potential (SOAP) and ozone formation potential (OFP) of selected VOC species were also determined. The total SOAP ranged from 67.24 µg/m3 in summer to 17.87 µg/m3 in winter, while the total OFP ranged from 377.87 µg/m3 in summer to 139.39 µg/m3 in winter. Additionally, positive matrix factorization (PMF) analysis identified four main VOC sources: gasoline combustion (18.3 %), microbial activity (38.6 %), monoterpene emissions during latex production (15.0 %), and industrial sources (28.1 %). These findings provide essential information for managing air pollution in rubber tree plantations. By adopting focused air quality management strategies, plantation operators can mitigate the adverse effects of VOCs, promoting a healthier and more sustainable future.
RESUMO
Fungal-derived natural products continue to play a pivotal role in the discovery of drug agents for human, veterinary, and general agricultural use. The fungus Neodidymelliopsis negundinis presents a significant saprobic ascomycete whose metabolites remained hitherto unstudied. Herein we report the isolation of eight unprecedented secondary metabolites named neodidymelliosides A and B (1 and 2), neodidymelliol A (3), and neodidymellioic acids A-E (4-8) produced by the submerged cultures of the fungus. Compound 1 proved to be the most active compound, with IC50 values ranging between 4.8 and 8.8 µM against KB3.1 (cervix), PC-3 (prostate), MCF-7 (breast), SKOV-3 (ovary), A431 (skin), and A549 (lung) cell lines. Compound 1 revealed significant inhibition of Staphylococcus aureus and Candida albicans biofilms.
Assuntos
Antineoplásicos , Ascomicetos , Masculino , Feminino , Humanos , Terpenos , Antineoplásicos/farmacologia , Linhagem Celular , Candida albicansRESUMO
This study aimed to produce chitosan films incorporated with Zanthoxylum limonella essential oil for extending shelf life. The volatile compounds of Z. limonella essential oil were identified by gas chromatography-mass spectrometry consisting of limonene, α-phellandrene, ρ-cymene, and sabinene as major compounds. In this study, the addition of Z. limonella essential oil at concentrations of 0 %, 2 %, and 4 % in chitosan film was assessed for its antibacterial activity against Escherichia coli and Staphylococcus aureus. Chitosan film incorporated with 4 % essential oil demonstrated the most significant antibacterial effect against E. coli and S. aureus in comparison to the chitosan film without essential oil due to the synergistic effects on antibacterial activity. The physical and mechanical properties of the chitosan films incorporated with Z. limonella oil developed were also assessed. The addition of essential oil to chitosan films led to improvements in mechanical strength and flexibility, while minimal changes were observed in terms of water solubility, water vapor permeability, and thermal stability. The findings emphasize that this innovative film not only extends the shelf life of pork without chemical preservatives but is also a fully bio-based material. Consequently, it shows great potential to be used as active packaging within the food industry.
Assuntos
Quitosana , Óleos Voláteis , Carne de Porco , Carne Vermelha , Zanthoxylum , Animais , Suínos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/farmacologia , Quitosana/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodosRESUMO
Zanthoxylum limonella essential oil possesses potential antimicrobial activity and is of considerable interest as food flavouring and traditional herb. In this study, an enzymolysis-pretreatment-microwave-assisted extraction (EP-MAE) method was used to extract Z. limonella essential oil. The response surface methodology (RSM) with Plackett-Burman design (PBD) and Box-Behnken design (BBD) models were employed to optimize conditions in the EP-MAE method. Seven variables including water to plant ratio, enzyme amount, incubation temperature, incubation time, shaking speed, microwave time, and microwave power were selected to determine the optimal values for extracting Z. limonella essential oil. As the results, four variables including water to plant ratio, enzyme amount, microwave time and power were evaluated as significant variables affecting on yield and volatile compounds of Z. limonella essential oil from both PBD and BBD experiments. The optimum conditions of EP-MAE was obtained as follows: water to plant ratio (11.16 mL/g), enzyme amount (0.68%), microwave time (36.73 min), and power (1665 W). The Z. limonella essential oil composition and its yield from EP-MAE was compared to those extracted from MAE and hydrodistillation. The optimal extraction conditions in the EP-MAE method enhanced significantly higher essential oil yield (7.89 ± 0.08 mg/g) compared to those found by MAE (7.26 ± 0.04 mg/g) and hydrodistillation (7.04 ± 0.03 mg/g), respectively. Fifty-one volatile components were identified among these methods, with similar major compounds of limonene, ß-pinene, and α-phellandrene, showing percentage ranging between 34.59-35.78%, 19.91-22.67%, 8.47-8.75%, respectively. However, an extremely higher content of compounds was detected using the EP-MAE method. This study demonstrates the significance of EP-MAE, which may be applied as a more potent extraction method for essential oils in aromatic plants compared to MAE and hydrodistillation.
Assuntos
Óleos Voláteis , Zanthoxylum , Micro-Ondas , ÁguaRESUMO
Biodegradable material incorporated with antifungal essential oil has become an alternative food preservation approach to reduce plastic waste. Essential oils of Amomum testaceum, Anethum graveolens, Piper longum, Kaempferia galanga, and Zanthoxylum limonella were tested for their antifungal activity against Aspergillus niger. A. graveolens essential oil demonstrated the highest inhibition zone diameter of 43.51 mm against A. niger after seven days comparing to those obtained from other essential oils ranging from 10.02 mm to 26.13 mm. The volatile compounds of A. graveolens essential oil were identified with major compounds such as carvone, trans-dihydrocarvone, limonene, and α-acorenol. The pineapple nanocellulose-gellan gum (PNC-GG) films incorporated with A. graveolens oil were formulated and tested for its physical and chemical properties. Addition of A. graveolens essential oil in PNC-GG films improved mechanical strength and decreased flexibility while solubility, water vapour permeability, and thermal stability slightly changed. PNC-GG films incorporated with A. graveolens essential oil were also tested as bread packaging inhibiting A. niger. The results indicated that no visible mycelial growth of A. niger was detected during 3-week storage. Therefore, the PNC-GG films incorporated with A. graveolens essential oil were recommended as biodegradable packaging material against A. niger in bread also extending its shelf life.
Assuntos
Anethum graveolens , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Anethum graveolens/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Pão , Embalagem de AlimentosRESUMO
Lasiodiplodia fungi are known to colonize plants as both pathogens and/or endophytes; hence, they can be exploited for their beneficial roles. Many compound classes from the genus have exhibited their potential biotechnological applications. Herein, we report two new metabolites 1 and 2 together with three known cyclo-(D-Ala-D-Trp) (3), indole-3-carboxylic acid (4) and a cyclic pentapeptide clavatustide B (5), isolated from the submerged cultures of a recently described species L. chiangraiensis. Chemical structures of the isolated compounds were determined by extensive NMR spectroscopic analyses together with HRESIMS. The absolute configurations of the new compounds were established based on comparing experimental and calculated time-dependent density functional theory circular dichroism (TDDFT-ECD) spectra. Compound 1 exhibited significant cytotoxic activities against an array of cell lines with IC50 values of 2.9-12.6 µM, as well as moderate antibacterial effects.
RESUMO
The antibacterial activity of Amomum verum Blackw, Zanthoxylum limonella (Dennst.) Alston, Zanthoxylum bungeanum, and Zingiber montanum (J. Koenig) Link ex A. Dietr essential oils were investigated against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. The essential oils of A. verum Blackw, Z. limonella (Dennst.) Alston, Z. bungeanum, and Z. montanum (J. Koenig) Link ex A. Dietr displayed strong antibacterial activity with a minimum inhibitory concentration and minimumbactericidal concentration ranging from 0.31 to 1.25 µg/mL and 0.62-5.00 µg/mL, respectively. The chemical composition of A. verum Blackw, Z. limonella (Dennst.) Alston, Z. bungeanum, and Z. montanum (J. Koenig) Link ex A. Dietr essential oils were analysed using gas chromatography-mass spectrometry. 1,8-Cineole and limonene were detected in high amounts in the A. verum Blackw and Z. limonella (Dennst.) Alston essential oils, respectively. The major compound in Z. bungeanum and Z. montanum (J. Koenig) Link ex A. Dietr essential oil was 2,4-dimethylether-phloroacetophenone and terpinene-4-ol, respectively. The antibacterial activities and synergistic effects between these essential oils were further analysed. The combination of A. verum Blackw and Z. limonella (Dennst.) Alston essential oils showed a synergistic effect against all bacterial strains, while the other essential oil combinations showed additive, antagonistic effects, and no interaction. The synergistic effect of the combination between A. verum Blackw and Z. limonella (Dennst.) Alston essential oils could be resulted from 1,8-cineole and limonene which was evaluated to possess strong antibacterial activity.
Assuntos
Amomum , Óleos Voláteis , Zanthoxylum , Óleos Voláteis/farmacologia , Limoneno , Eucaliptol , Antibacterianos/farmacologia , Escherichia coliRESUMO
Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO2 with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.
Assuntos
Acetais , Polietileno , Polietileno/metabolismo , Hexobarbital , Biodegradação Ambiental , CarbonoRESUMO
Polyester urethanes (PUR) are widely used in industries and have led to a worldwide plastic waste problem. Thus, novel solutions for PUR degradation are required to reduce environmental pollution. This work investigates the PUR biodegradation efficiency of 33 fungal species using a polyester-polyurethane colloid branded Impranil DLN (Impranil) compared to Aspergillus niger, which served as the positive control. The biodegradation is evaluated based on its ability to clear Impranil in media. Eleven fungi can clear Impranil in both solid- and liquid-medium assays. The highest degradation was attributed to Embarria clematidis cultured with Impranil as a carbon source. The degradation was confirmed by the Sturm test, Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). From the Sturm test, CO2 at a concentration of 0.85 g/L was found in E. clematidis cultured with 150 mL of Impranil solution after a 2-week incubation period while the CO2 at a concentration of 0.53 g/L was detected from A. niger in the same conditions. The biodegradation was further confirmed by evaluating the clearance percentage of supernatant of E. clematidis and A. niger culturing with Impranil from the Sturm test. The clearance percentage of E. clematidis and A. niger supernatant was 88.84 and 48.97%, respectively. Moreover, the degradation of soft segment and breakdown of ester linkages were observed, as evidenced by the decrease of the carbonyl (1,715 cm-1) and N-H stretching (1,340 cm-1 and 1,020 cm-1) FTIR spectral peaks, respectively. GC-MS detected 3Z-heptenol, 5Z-octenol, 2E,4E-hexadienol acetate, and 3E,6Z-nonadienol as degradation products from the E. clematidis culture supernatant. This fungus was screened for its ability to produce extracellular esterase, protease, and urease enzymes. Extracellular esterase, very low urease, and no protease activities were detected in the culture supernatant of E. clematidis in the presence of Impranil. E. clematidis can degrade Impranil partially via hydrolysis of ester linkages by cell-bound esterases at a considerable rate without any prior treatment. This fungus not only degraded Impranil but also mineralized them into CO2 and H2O. E. clematidis can be applied in the process of biochemical depolymerization of PUR for the pure monomers recycling.
RESUMO
The essential oil of Elsholtzia beddomei C. B. Clarke ex Hook. f. was investigated for its chemical composition and tested for antioxidant and antimicrobial activities. The E. beddomei essential oil was extracted using hydrodistillation for 4 h (yield of 1.38% w/w). Forty-three volatile compounds were identified in the E. beddomei essential oil, including linalool (83.67%), perillaldehyde (4.68%), neral (3.68%), perillene (1.65%), E-caryophyllene (1.55%), and α-zingiberene (1.06%) as the major compounds. The antioxidant activity of the E. beddomei essential oil was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation scavenging activity. The IC50 values calculated using the DPPH and ABTS methods were 148.31 and 172.22 µg/mL, respectively. In addition, using disc diffusion and broth microdilution methods, the antimicrobial activities of the E. beddomei essential oil against Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Candida albicans were evaluated. The E. beddomei essential oil possessed an inhibitory effect with the minimum inhibitory concentration in the range of 31.25-250.00 µg/mL among these pathogens. The results indicated that E. beddomei essential oil is an alternative raw material of food, and medicinal products for use in pharmaceutical applications.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Lamiaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade MicrobianaRESUMO
The essential oil was extracted from Peucedanum dhana A. Ham, which grows in Thailand, using a Clevenger apparatus, resulting in an oil yield of 0.76% w/w. Forty-two compounds were identified using gas chromatography-mass spectrometry. The major compounds were trans-piperitol (51.23%), ß-pinene (11.72%), o-cymene (11.12%), γ-terpinene (9.21%), and limonene (4.91%). The antimicrobial activity of the P. dhana essential oil was investigated by measuring the inhibition zone diameter, minimum inhibitory concentration (MIC), and minimum microbicidal concentration (MMC). The inhibition zone diameters of P. dhana essential oil (1000 µg/mL) against tested pathogens ranged from 10.70 to 40.80 mm. Significant antimicrobial activity against tested pathogens was obtained, with MIC and MMC values of 62.50-250 µg/mL and 250-1000 µg/mL, respectively. Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes exposed to P. dhana essential oil at the MIC were analysed by flow cytometry using propidium iodide (PI) and SYTO9 to assess membrane integrity compared to trans-piperitol and ß-pinene. After 24 h, treatments with trans-piperitol resulted in the most significant cell membrane alteration and depolarization followed by P. dhana essential oil and ß-pinene, respectively. It was demonstrated that the P. dhana essential oil presented antibacterial action against E. coli, P. aeruginosa, and E. aerogenes. The antioxidant activity of P. dhana essential oil was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) scavenging activity assays. The IC50 values obtained from the DPPH and ABTS methods were 9.13 and 9.36 mg/mL, respectively. The cytotoxic effect of P. dhana oil was tested against human colonic adenocarcinoma (SW480), human lung adenocarcinoma (A549), cervical cancer (Hela), and murine fibroblast (3T3L1) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The essential oil had cytotoxicity against all cancer cells, with significant cytotoxicity towards SW480 cells. As a control experiment, two pure compounds-trans-piperitol and ß-pinene, were also tested for their antimicrobial, antioxidant, and cytotoxic activity. Both compounds showed varied activity in all assays. The results indicate that P. dhana essential oil could be used as a source of functional ingredients in food and pharmaceutical applications.
Assuntos
Apiaceae/química , Óleos Voláteis/farmacologia , Células 3T3 , Células A549 , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Alimento Funcional , Células HeLa , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , TailândiaRESUMO
Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in mineral salt medium agar containing low-density polyethylene (LDPE) films. Diaporthe italiana, Thyrostroma jaczewskii, Collectotrichum fructicola, and Stagonosporopsis citrulli were found to grow significantly by culturing with LDPE film as the only sole carbon source compared to those obtained from Aspergillus niger. These fungi were further cultured in mineral salt medium broth containing LDPE film as the sole carbon source for 90 days. The biodegradation ability of these fungi was evaluated from the amount of CO2 and enzyme production. Different amounts of CO2 were released from D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger culturing with LDPE film, ranging from 0.45 to 1.45, 0.36 to 1.22, 0.45 to 1.45, 0.33 to 1.26, and 0.37 to 1.27 g/L, respectively. These fungi were able to secrete a large amount of laccase enzyme compared to manganese peroxidase, and lignin peroxidase enzymes detected under the same conditions. The degradation of LDPE films by culturing with these fungi was further determined. LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, and 28.78%, respectively. The tensile strength of LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger also reduced significantly by 1.56, 1.78, 0.43, 1.86, and 3.34 MPa, respectively. The results from Fourier transform infrared spectroscopy (FTIR) reveal an increasing carbonyl index in LDPE films culturing with these fungi, especially C. fructicola. Analysis of LDPE films using scanning electron microscopy (SEM) confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. The volatile organic compounds (VOCs) emitted from LDPE films cultured with these fungi were analyzed by gas chromatography-mass spectrometry (GC-MS). VOCs such as 1,3-dimethoxy-benzene, 1,3-dimethoxy-5-(1-methylethyl)-benzene, and 1,1-dimethoxy-decane were detected among these fungi. Overall, these fungi have the ability to break down and consume the LDPE film. The fungus C. fructicola is a promising resource for the biodegradation of LDPE which may be further applied in plastic degradation systems based on fungi.
RESUMO
Fungal endophytes are microorganisms living symbiotically with a host plant. They can produce volatile organic compounds (VOCs) that have antimicrobial activity. This study aimed to isolate endophytic fungi from Barleria prionitis plants grown in Thailand and to investigate the antifungal properties of their VOCs against Colletotrichum acutatum, a causal agent of anthracnose disease on post-harvest strawberry fruits. A total of 34 endophytic fungi were isolated from leaves of B. prionitis. The VOCs produced from each individual isolate were screened for their antifungal activity against C. acutatum using a dual-culture plate method. From this in vitro screening experiment, the VOCs produced by the endophytic isolate BP11 were found to have the highest inhibition percentage (80.3%) against the mycelial growth of C. acutatum. The endophytic isolate BP11 was molecularly identified as Daldinia eschscholtzii MFLUCC 19-0493. This strain was then selected for an in vivo experiment. Results from the in vivo experiment indicated that the VOCs produced by D. eschscholtzii MFLUCC 19-0493 were able to inhibit infections by C. acutatum on organic fresh strawberry fruits with an average inhibition percentage of 72.4%. The quality of the pathogen-inoculated strawberry fruits treated with VOCs produced by D. eschscholtzii MFLUCC 19-0493 was evaluated. Their fruit firmness, total soluble solids, and pH were found to be similar to the untreated strawberry fruits. Solid phase microextraction-gas chromatographic-mass spectrometric analysis of the VOCs produced by D. eschscholtzii MFLUCC 19-0493 led to the detection and identification of 60 compounds. The major compounds were elemicin (23.8%), benzaldehyde dimethyl acetal (8.5%), ethyl sorbate (6.8%), methyl geranate (6.5%), trans-sabinene hydrate (5.4%), and 3,5-dimethyl-4-heptanone (5.1%). Each major compound was tested for its antifungal activity against C. acutatum using the in vitro assay. While all these selected VOCs showed varying degrees of antifungal activity, elemicin was found to possess the strongest antifungal activity. This work suggests that D. eschscholtzii MFLUCC 19-0493 could be a promising natural preservative for controlling C. acutatum associated anthracnose disease in strawberry fruits during the post-harvest period.
RESUMO
BACKGROUND: Two Fusarium fungi, F. oxysporum and F. proliferatum, have been recognized as major pathogenic fungi that cause postharvest decay of chili fruits. Ozone and some toxic chemicals are used to control pathogenic infections, leading to longer storage lives of agricultural commodities. However, these chemicals may pose some risks to the applicators and the environment. Therefore, alternative, easy-to-use fumigants for effective control of Fusarium infections in harvested fresh chilies are needed. RESULTS: Two endophytic fungi, Trichoderma afroharzianum strain MFLUCC19-0090 and T. afroharzianum strain MFLUCC19-0091, were isolated from Schefflera leucantha leaves. Their volatile compounds were investigated for antifungal activities against F. oxysporum and F. proliferatum. In vitro results showed that the volatile compounds produced by each strain inhibited pathogen growth. Additionally, the Trichoderma-derived volatile compounds significantly reduced Fusarium-related disease severity and incidence percentages in the inoculated fresh chilies. Antifungal properties of the volatile compounds were found to be specific to the species of the tested pathogens (MFLUCC19-0090 greatly suppressed F. oxysporum and MFLUCC19-0091 greatly suppressed F. proliferatum). Seventy-three volatile compounds were detected from both strains. Among the major volatile compounds detected, phenyl ethyl alcohol was found to possess the strongest antifungal activity against both pathogens. CONCLUSION: These Trichoderma-derived volatile compounds may be used as alternative fumigants for controlling Fusarium rot in harvested fresh chilies. The successful use of volatile compounds as biofumigants can prevent significant market losses and, more importantly, may reduce the health hazards caused by Fusarium-associated mycotoxin exposures among consumers. © 2021 Society of Chemical Industry.
Assuntos
Antifúngicos/farmacologia , Capsicum/microbiologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Trichoderma/química , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Araliaceae/microbiologia , Benzoquinonas , Cicloexanonas , Endófitos/química , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fusarium/fisiologia , Hypocreales/química , Hypocreales/isolamento & purificação , Hypocreales/metabolismo , Doenças das Plantas/microbiologia , Trichoderma/isolamento & purificação , Trichoderma/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismoRESUMO
Bunch rot in grapes is an aggressive disease and needs to be controlled during the postharvest period. We investigate the antifungal potential of Zanthoxylum bungeanum Maxim., Zanthoxylum rhetsa, Cuminum cyminum, Coriandrum sativum, and Zingiber montanum (J. Koenig) Link ex A. Dietr. essential oils against Aspergillus aculeatus that cause bunch rot disease on postharvest grapes. C. cyminum essential oil exhibited stronger significantly inhibition percentage of 95.08% than other treatments in in vitro assay. Cumin aldehyde (33.94%) and α-terpinen-7-al (32.20%) were identified as major volatile compounds in C. cyminum oil. Antifungal potential of C. cyminum oil was then tested in conidia germination and in vitro tests compared to cumin aldehyde and α-terpinen-7-al. Their EC50 values against the conidial germination were also estimated. Significant reduction of conidia germination was also detected in C. cyminum essential oil and cumin aldehyde at a concentration of 1,000 and 100 µg/mL, respectively. EC50 values of the C. cyminum essential oil, cumin aldehyde, and α-terpinen-7-al were 67.28 µg/mL, 9.31 µg/mL, and 13.23 µg/mL, respectively. In vivo assay, the decrease of the disease severity (0.69%) and incidence (1.48%) percentage of A. aculeatus on grape berries treated at 1,000 µg/mL of C. cyminum essential oil was significantly greater than that obtained from other treatments after 10 days incubation. In addition, grape berries treated with C. cyminum essential oil decreased weight loss and retained fruit firmness. The changing of total soluble solids, total phenolic content, and antioxidant activity are also delayed in treated fruits. Therefore, essential oil of C. cyminum may be applied as a biological antifungal agent to control A. aculeatus in postharvest grapes without any negative effects on its quality.
Assuntos
Cuminum/química , Óleos Voláteis/farmacologia , Doenças das Plantas/prevenção & controle , Vitis/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/patogenicidade , Humanos , Óleos Voláteis/química , Doenças das Plantas/microbiologia , Vitis/crescimento & desenvolvimento , Vitis/microbiologiaRESUMO
The essential oils of five Lavandula stoechas cultivars grown in Thailand were characterized for their volatile compounds using GC-FID and GC/MS methods as well as screened for antibacterial and antioxidant activities. Dried aerial parts, including flowers and stems from each cultivar, were subjected to hydrodistillation for 4â h. The essential oil yields were 0.18 %-0.82 % w/w. Of the 95 compounds detected and identified, 1,8-cineole, fenchone, and camphor were considered the major compounds. Essential oil from each cultivar demonstrated different patterns of antibacterial activity and a variety of antioxidant properties. The highest antibacterial activity, MIC=0.39â mg mL-1 , was observed from the essential oil of L. stoechas 'major' (against Klebsiella pneumoniae and Salmonella typhimurium) and the essential oil of L. stoechas 'white lavender' (against S. typhimurium). The essential oil of L. stoechas×viridis 'St. Brelade' possessed the highest antioxidant capacity, as determined by the DPPH and ABTS assays (IC50 of 67.65 and 89.26â mg mL-1 , respectively). The results indicated that some of these essential oils could be used as key ingredients in lavender oil products in Thailand to increase their therapeutic efficacy, depending on their intended application.
Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Lavandula/química , Óleos Voláteis/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Flores/química , Lavandula/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Picratos/antagonistas & inibidores , Componentes Aéreos da Planta/química , Ácidos Sulfônicos/antagonistas & inibidores , TailândiaRESUMO
Endophytic fungi, which colonize within a host plant without causing any apparent diseases, have been considered as an important source of bioactive secondary metabolites containing antimicrobial and antioxidant activities. The aim of this research was to isolate the endophytic fungi of Cinnamomum loureiroi and then to screen their antimicrobial and antioxidant activities. A total of 11 fungal endophytes were isolated from healthy leaves of Cinnamomum loureiroi belonging to six genera: Botryosphaeria, Colletotrichum, Diaporthe, Fusarium, Neopestalotiopsis, and Pestalotiopsis. All isolated strains were cultured and further extracted with ethyl acetate solvent. Antimicrobial activity of all crude endophytic fungal extracts was analyzed using disc diffusion assay against six bacterial and two fungal pathogens. Crude extracts of strains MFLUCC15-1130 and MFLUCC15-1131 showed broad-spectrum antimicrobial activity against all tested pathogens. Activity against Bacillus cereus and Staphylococcus epidermidis was notable, showing the lowest minimum inhibitory concentration at 3.91 µg/mL. Antioxidant activity of all crude endophytic fungal extracts was also evaluated based on 2,2-diphenyl-1-picrylhydrazyl assay. Significant antioxidant activity was detected in the crude extracts of fungus MFLUCC15-1130 and MFLUCC15-1131 with IC50 of 22.92 ± 0.67 and 37.61 ± 0.49 µg/mL, respectively. Using molecular identification, MFLUCC15-1130 and MFLUCC15-1131 were identified as Neopestalotiopsis sp. and Diaporthe sp., respectively. The major chemical constituents produced by both crude extracts were identified by gas chromatography-mass spectrometry. Eugenol, myristaldehyde, lauric acid, and caprylic acid were the primary antimicrobial and antioxidant compounds in both crude extracts. This is the first report of eugenol being a biologically active compound of Neopestalotiopsis sp. and Diaporthe sp. fungal endophytes. Eugenol has been reported as antimicrobial and antioxidant agents with agronomic applications. Thus the two newly-isolated endophytes may be used for eugenol production, which in turn can be used in a variety of applications.