Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301782, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775629

RESUMO

2D metal compounds, such as transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and MXenes, are emerging as important electrocatalyst materials in the transition to a sustainable energy future. Aided by their high surface area, electrical conductivity, and tunable electronic properties, these materials have provided a crucial research thrust in enhancing the efficiency of green hydrogen production, fuel cells, and carbon reduction processes. Most importantly, the synthesis of nanostructured 2D compounds, while challenging, is the key to optimizing their catalytic performance. Recent advancements in this field have highlighted the potential of 2D metal compounds in revolutionizing energy conversion technologies, which entails the discovery of new material compositions, the development of novel synthetic routes, and the integration of these materials into practical energy conversion systems. This review presents an overview of the distinctive characteristics of nanoscale-confined 2D metal compounds, the challenges encountered in their synthesis, and electrochemical applications.

2.
J Am Chem Soc ; 145(31): 16951-16965, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439128

RESUMO

Hydrogen has been chosen as an environmentally benign energy source to replace fossil-fuel-based energy systems. Since hydrogen is difficult to store and transport in its gaseous phase, thermochemical liquid organic hydrogen carriers (LOHCs) have been developed as one of the alternative technologies. However, the high temperature and pressure requirements of thermochemical LOHC systems result in huge energy waste and impracticality. This Perspective proposes electrochemical (EC)-LOHCs capable of more efficient, safer, and lower temperature and pressure hydrogen storage/utilization. To enable this technology, several EC-LOHC candidates such as isopropanol, phenolic compounds, and organic acids are described, and the latest research trends and design concepts of related homo/hetero-based electrocatalysts are discussed. In addition, we propose efficient fuel-cell-based systems that implement electrochemical (de)hydrogenation of EC-LOHCs and present prospects for relevant technologies.

3.
Acc Chem Res ; 55(7): 1015-1024, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263076

RESUMO

ConspectusAtoms in a bulk solid phase are usually trapped to fixed positions and can change their position only under certain conditions (e.g., at a melting point) due to the high energy barrier of migration between positions within the crystal lattice. Contrary to the atoms in the bulk solid phase, however, atoms in nanoparticles can migrate and change their local positions rather easily, enabled by the high surface energies. The energy states of surface atoms of nanoparticles can be altered by surface-binding moieties, which in turn influence the intrananoparticle migration of atoms at the subsurface of nanoparticles. In 2008, this possibility of intrananoparticle migration was demonstrated with RhPd alloy nanoparticles under the different gas environments of reductive CO or oxidative NO. We envisaged that the explosive expansion of well-defined, multiphasic nanoparticle libraries might be realized by specifically dictating the atom migration direction, by modulating the energy state of specific atoms in the multiphasic nanocrystals. The nanoparticle surface energy is a function of a myriad of factors, namely, surface binding moiety, structural features affecting coordination number of atoms such as nanoparticle geometry, steps, and kinks, and the existence of heterointerface with lattice mismatch. Therefore, all these factors affecting atom energy state in the nanoparticle, categorically termed as "chemical field" (CF), can serve as the driving force for purposeful directional movement of atoms within nanoparticles and subsequent reaction. Geometrically well-defined multiphasic nanocrystals present great promises toward various applications with special emphasis on catalysis and thus are worthy synthetic targets. In recent years, we have demonstrated that manipulation of CFs is an effective synthetic strategy for a variety of geometrically well-defined multiphasic nanocrystals. Herein, we classified multiphasic nanocrystals into metallic alloy systems and ionic systems (metal compounds) because the modes of CF are rather different between these two systems. The migration-directing CFs for neutral metallic atoms are mostly based on the local distribution of elements, degree of alloying, or highly energetic structural features. On the other hand, for the ionic system, structural parameters originating from the discrepancy between cations and anions should be more considered; ionic radii, phase stability, lattice strain, anionic frameworks, cation vacancies, etc. can react as CFs affecting atom migration behavior in the multiphasic ionic nanocrystals. We expect that the limits and potentials of CF-based synthesis of multiphasic nanocrystals described in this work will open a wide avenue to diverse material compositions and geometries, which have been difficult or impossible to approach via conventional nanoparticle synthesis schemes.

4.
ACS Nano ; 14(9): 11205-11214, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32628443

RESUMO

Postmodification of nanocrystals through cation exchange has been very successful in diversifying nanomaterial compositions while retaining the structural motif. Copper compound nanoparticles are particularly useful as templates because of inherent defects serving as effective cation diffusion routes and excellent cation mobility. Therefore, the development of shape-controlled multianion systems, such as copper phosphosulfide, can potentially lead to the formation of diverse metal phosphosulfide nanomaterials that have otherwise inaccessible compositions and structures. However, there is, to the best of our knowledge, no report on the shape-controlled synthesis of copper phosphosulfide nanoparticles because the introduction of the second anion to the metal compound might destroy the nanoparticle morphology and crystallinity due to the required high energy for anion diffusion and mixing. Herein, we report that it is feasible to transfer the structural motif of copper sulfide to copper phosphosulfide using tris(diethylamino)phosphine. The anion-mixed copper phosphosulfide in the form of a hollow toroid could provide a pathway to previously inaccessible phases and morphologies. We verified the versatility of a copper phosphosulfide hollow toroid as a cation-exchange template by the successful synthesis of cobalt, nickel, indium, and cadmium phosphosulfides as well as bimetallic cobalt-nickel phosphosulfide (Co2-xNixP1-ySy) with a retained structural motif.

5.
J Phys Chem Lett ; 10(16): 4505-4510, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310141

RESUMO

Owing to their excellent surface plasmonic properties, Au nanobranches have drawn increasing attention in various bioapplications, such as contrast agents for photoacoustic imaging, nanomedicines for photothermal therapy, and carriers for drug delivery. The monodispersity and plasmonic bandwidth of Au nanobranches are of great importance for the efficacy of those bioapplications. However, it is still a challenge to accurately synthesize size- and shape-controlled Au nanobranches. Here we report a facile seed-mediated growth method to synthesize monodisperse Au nanotetrapods (NTPs) with tunable and ultranarrow plasmonic bands. The NTPs have a novel D2d symmetry with four arms elongated in four ⟨110⟩ directions. The growth mechanism of NTPs relies on the delicate kinetic control of deposition and diffusion rates of adatoms. Upon laser irradiation, the PEGylated NTPs possess remarkable photothermal conversion efficiencies and photoacoustic imaging properties. The NTPs can be applied as a multifunctional theranostic agent for both photoacoustic imaging and image-guided photothermal therapy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanomedicina Teranóstica , Polietilenoglicóis/química , Temperatura
6.
Adv Mater ; 31(1): e1805546, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30362625

RESUMO

Designing high-performance, precious-metal-based, and economic electrocatalysts remains an important challenge in proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable bifunctional electrocatalyst for PEM electrolyzers based on a rattle-like catalyst comprising a Ni/Ru-doped Pt core and a Pt/Ni-doped RuO2 frame shell, which is topotactically transformed from an icosahedral Pt/Ni/Ru nanocrystal, is reported. The RuO2 -based frame shell with its highly reactive surfaces leads to a very high activity for the oxygen evolution reaction (OER) in acidic media, reaching a current density of 10 mA cm-2 at an overpotential of 239 mV, which surpasses those of previously reported catalysts. The Pt dopant in the RuO2 shell enables a sustained OER activity even after a 2000 cycles of an accelerated durability test. The Pt-based core catalyzes the hydrogen evolution reaction with an excellent mass activity. A two-electrode cell employing Pt/RuO2 as the electrode catalyst demonstrates very high activity and durability, outperforming the previously reported cell performances.

7.
Dalton Trans ; 47(45): 16011-16018, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30318522

RESUMO

Rational design and synthesis of efficient hydrogen evolution reaction (HER) electrocatalysts from Earth-abundant elements are essential for the development of economical water-splitting processes. This Frontier article will highlight the recent development and advances in designing ferric phosphide (FeP) based electrode materials for the HER.

8.
Nanoscale ; 10(43): 20073-20088, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30376016

RESUMO

Designing highly efficient and durable electrocatalysts for the oxygen reduction reaction (ORR), the key step for the operation of polymer electrolyte membrane fuel cells (PEMFCs), is of a pivotal importance for advancing PEMFC technology. Since the most significant progress has been made on Pt3Ni(111) alloy surfaces, nanoscale PtNi alloy octahedra enclosed by (111) facets have emerged as promising electrocatalysts toward the ORR. However, because their practical uses have been hampered by the cost, sluggish reaction kinetics, and poor durability, recent advances have engendered a wide variety of structure-, size-, and composition-controlled bimetallic PtNi octahedra. Herein, we therefore review the important recent developments of PtNi octahedral electrocatalysts point by point to give an overview of the most promising strategies. Specifically, the present review article focuses on the synthetic methods for the PtNi octahedra, the core-shell and multi-metallic strategies for performance improvement, and their structure-, size-, and composition-control-based ORR activity. By considering the results achieved in this field, a prospect for this alloy nanocatalysts system for future sustainable energy applications is also proposed.

9.
Chem Soc Rev ; 47(22): 8173-8202, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30009297

RESUMO

While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.

10.
ACS Appl Mater Interfaces ; 10(12): 10115-10122, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29513002

RESUMO

A layered ß-NiOOH crystal with undercoordinated facets is an active and economically viable nonnoble catalyst for the oxygen evolution reaction (OER) in alkaline electrolytes. However, it is extremely difficult to enclose the ß-NiOOH crystal with undercoordinated facets because of its inevitable crystal transformation to γ-NiOOH, resulting in the exfoliation of the catalytic surfaces. Herein, we demonstrate {111}-faceted Ni octahedra as the parent substrates whose surfaces are easily transformed to catalytically active ß-NiOOH during the alkaline OER. Electron microscopic measurements demonstrate that the horizontally stacked ß-NiOOH on the surfaces of Ni octahedra has resistance to further oxidation to γ-NiOOH. By contrast, significant crystal transformation and thus the exfoliation of the γ-NiOOH sheets can be observed on the surfaces of Ni cubes and rhombic dodecahedra (RDs). Electrocatalytic measurements show that the ß-NiOOH formed on Ni octahedra exhibits highly enhanced OER durability compared to the Ni cubes, Ni RDs, and the state-of-the-art Ir/C catalysts.

11.
Small ; 14(3)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29171686

RESUMO

The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni3 Cox @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+ ) species, which can be modulated by the core compositions.

12.
Anal Chem ; 90(1): 807-813, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29239604

RESUMO

Enzyme-like nanocatalytic reactions developed for high signal amplification in biosensors are of limited use because of their low reaction rates and/or unwanted side reactions in aqueous electrolyte solutions containing dissolved O2. Herein, we report a nitrosoreductase-like catalytic reaction, employing 4-nitroso-1-naphthol, Pd nanoparticles, and H3N-BH3, which affords a high reaction rate and minimal side reactions, enabling its use in ultrasensitive electrochemical biosensors. 4-Nitroso-1-naphthol was chosen after five hydroxy-nitro(so)arene compounds were compared in terms of high signal and low background levels. Importantly, the nanocatalytic reaction occurs without the self-hydrolysis and induction period observed in the nanocatalytic reduction of nitroarenes by NaBH4. The high signal level results from (i) fast nanocatalytic 4-nitroso-1-naphthol reduction, (ii) fast electrochemical redox cycling, and (iii) the low influence of dissolved O2. The low background level results from (i) slow direct reaction between 4-nitroso-1-naphthol and H3N-BH3, (ii) slow electrode-mediated reaction between 4-nitroso-1-naphthol and H3N-BH3, and (iii) slow electrooxidation of H3N-BH3 at electrode. When applied to the detection of parathyroid hormone, the detection limit of the newly developed biosensor was ∼0.3 pg/mL. The nitrosoreductase-like nanocatalytic reaction is highly promising for ultrasensitive and stable biosensing.


Assuntos
Nanopartículas Metálicas/química , Naftóis/química , Compostos Nitrosos/química , Hormônio Paratireóideo/análise , Anticorpos/imunologia , Técnicas Biossensoriais/métodos , Catálise , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Oxirredução , Paládio/química , Hormônio Paratireóideo/imunologia
13.
Nanoscale ; 9(34): 12231-12247, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28819660

RESUMO

Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

14.
Small ; 13(29)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594433

RESUMO

The development of Pt-free electrocatalysts for the hydrogen evolution reaction (HER) recently is a focus of great interest. While several strategies are developed to control the structural properties of non-Pt catalysts and boost their electrocatalytic activities for the HER, the generation of highly reactive defects or interfaces by combining a metal with other metals, or with metal oxides/sulfides, can lead to notably enhanced catalytic performance. Herein, the preparation of cactus-like hollow Cu2-x S@Ru nanoplates (NPs) that contain metal/metal sulfide heterojunctions and show excellent catalytic activity and durability for the HER in alkaline media is reported. The initial formation of Ru islands on presynthesized Cu1.94 S NPs, via cation exchange between three Cu+ ions and one Ru3+ , induces the growth of the Ru phase, which is concomitant with the dissolution of the Cu1.94 S nanotemplate, culminating in the formation of a hollow nanostructure with numerous thin Ru pillars. Hollow Cu2-x S@Ru NPs exhibit a small overpotential of 82 mV at a current density of -10 mA cm-2 and a low Tafel slope of 48 mV dec-1 under alkaline conditions; this catalyst is among state-of-the-art HER electrocatalysts in alkaline media. The excellent performance of hollow Cu2-x S@Ru NPs originates from the facile dissociation of water in the Volmer step.

15.
Nanoscale ; 8(36): 16379-16386, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27714051

RESUMO

The rational design of highly efficient electrocatalysts for the hydrogen evolution reaction (HER) is of prime importance for establishing renewable and sustainable energy systems. The alkaline HER is particularly challenging as it involves a two-step reaction of water dissociation and hydrogen recombination, for which platinum-based binary catalysts have shown promising activity. In this work, we synthesized high performance platinum-nickel-cobalt alloy nanocatalysts for the alkaline HER through a simple synthetic route. This ternary nanostructure with a Cartesian-coordinate-like hexapod shape could be prepared by a one-step formation of core-dual shell Pt@Ni@Co nanostructures followed by a selective removal of the Ni@Co shell. The cobalt precursor brings about a significant impact on the control of size and shape of the nanostructure. The PtNiCo nanohexapods showed a superior alkaline HER activity to Pt/C and binary PtNi hexapods, with 10 times greater specific activity than Pt/C. In addition, the PtNiCo nanohexapods demonstrated excellent activity and durability for the oxygen reduction reaction in acidic media.

16.
Bioconjug Chem ; 27(1): 59-65, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26710682

RESUMO

Early diagnosis of infectious diseases is important for treatment; therefore, selective and rapid detection of pathogenic bacteria is essential for human health. We report a strategy for highly selective detection and rapid separation of pathogenic microorganisms using magnetic nanoparticle clusters. Our approach to develop probes for pathogenic bacteria, including Salmonella, is based on a theoretically optimized model for the size of clustered magnetic nanoparticles. The clusters were modified to provide enhanced aqueous solubility and versatile conjugation sites for antibody immobilization. The clusters with the desired magnetic property were then prepared at critical micelle concentration (CMC) by evaporation-induced self-assembly (EISA). Two different types of target-specific antibodies for H- and O-antigens were incorporated on the cluster surface for selective binding to biological compartments of the flagella and cell body, respectively. For the two different specific binding properties, Salmonella were effectively captured with the O-antibody-coated polysorbate 80-coated magnetic nanoclusters (PCMNCs). The synergistic effect of combining selective targeting and the clustered magnetic probe leads to both selective and rapid detection of infectious pathogens.


Assuntos
Técnicas Bacteriológicas/métodos , Nanopartículas/química , Salmonella/isolamento & purificação , Anticorpos Antibacterianos/química , Técnicas Bacteriológicas/instrumentação , Espectroscopia de Ressonância Magnética , Magnetismo/instrumentação , Magnetismo/métodos , Polissorbatos/química , Salmonella/imunologia , Sorogrupo , Espectroscopia de Infravermelho com Transformada de Fourier
17.
ACS Nano ; 9(3): 2856-67, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25734892

RESUMO

Catalytic properties of nanoparticles can be significantly enhanced by controlling nanoscale alloying and its structure. In this work, by using a facet-controlled Pt@Ni core-shell octahedron nanoparticle, we show that the nanoscale phase segregation can have directionality and be geometrically controlled to produce a Ni octahedron that is penetrated by Pt atoms along three orthogonal Cartesian axes and is coated by Pt atoms along its edges. This peculiar anisotropic diffusion of Pt core atoms along the ⟨100⟩ vertex, and then toward the ⟨110⟩ edges, is explained via the minimum strain energy for Ni-Ni pair interactions. The selective removal of the Ni-rich phase by etching then results in structurally fortified Pt-rich skeletal PtNi alloy framework nanostructures. Electrochemical evaluation of this hollow nanoframe suggests that the oxygen reduction reaction (ORR) activity is greatly improved compared to conventional Pt catalysts.

18.
Adv Mater ; 25(23): 3202-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23640814

RESUMO

Hollow Mn-doped iron oxide nanocontainers, formed by a novel one-pot synthetic process, fulfill the dual requirements of delivering an effective dose of an anticancer drug to tumor tissue and enabling image-contrast monitoring of the nanocontainer fate through T2 -weighted magnetic resonance imaging, thereby determining the optimal balance between diagnostic and therapeutic moieties in an all-in-one theranostic nanoplatform.


Assuntos
Compostos Férricos/química , Nanoestruturas/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular , Cristalização , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Manganês/química , Camundongos , Tamanho da Partícula
19.
Nanoscale ; 5(13): 5738-42, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23715587

RESUMO

A fail-proof synthetic strategy has been developed for a multiply twinned dumbbell-shaped Rh@Pt nanostructure, which exhibits a superior electrocatalytic activity for methanol oxidation reaction. The unusually high electrocatalytic activity has been attributed to the synergistic effects of crystal twinning and core-shell structure.


Assuntos
Nanopartículas Metálicas/química , Metanol/química , Platina/química , Ródio/química , Catálise , Técnicas Eletroquímicas , Oxirredução
20.
Chem Commun (Camb) ; 49(6): 573-5, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23223416

RESUMO

The CO-assisted thermal decomposition of a new, surfactant-ligated Pt precursor, [Pt(acac)(NHR)](n) (n = 2, 3; R = C(18)H(37)), gives structurally uniform five-fold twinned Pt nanorods. The Pt nanorods, mostly covered by {100} facets, exhibit much enhanced electrocatalytic activity over {100} faceted Pt nanocubes, indicating the superior catalytic performance due to the presence of the reactive twinning interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA