Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1489-1498, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440995

RESUMO

Detection of microplastics from water is crucial for various reasons, such as food safety monitoring, monitoring of the fate and transport of microplastics, and development of preventive measures for their occurrence. Currently, microplastics are detected by isolating them using filtration, separation by centrifugation, or membrane filtration, subsequently followed by analysis using well-established analytical methods, such as Raman spectroscopy. However, due to their variability in shape, color, size, and density, isolation using the conventional methods mentioned above is cumbersome and time-consuming. In this work, we show a surface-nanodroplet-decorated microfluidic device for isolation and analysis of small microplastics (diameter of 10 µm) from water. Surface nanodroplets are able to capture nearby microplastics as water flows through the microfluidic device. Using a model microplastic solution, we show that microplastics of various sizes and types can be captured and visualized by using optical and fluorescence microscopy. More importantly, as the surface nanodroplets are pinned on the microfluidic channel, the captured microplastics can also be analyzed using a Raman spectroscope, which enables both physical (i.e., size and shape) and chemical (i.e., type) characterization of microplastics at a single-particle level. The technique shown here can be used as a simple, fast, and economical detection method for small microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Microfluídica , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água/análise
2.
J Colloid Interface Sci ; 643: 82-91, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37054546

RESUMO

HYPOTHESIS: Surface nanodroplets have recently been employed for in situ chemical analysis leveraging their low volume, e.g. O(10-15 L), that enables rapid analyte extraction and pre-concentration. So far, most surface nanodroplets have been formed using single organic solvents such as 1-octanol, toluene, among others. Designing multicomponent surface nanodroplet with controllable composition is highly desirable for extending their application as extractant. EXPERIMENT: Here, we formed surface nanodroplets using green deep eutectic solvent (gDES) composed of thymol and decanoic acid, both of which are naturally occurring chemicals. The influence of parameters such as flowrate and the composition of deep eutectic solvent on the surface nanodroplet formation were studied. As proof-of-concept, the gDES surface nanodroplets were further used to extract and detect trace amounts of fluorescent rhodamine 6G dye and copper ions from water. FINDINGS: The formation of gDES surface nanodroplets follows the theoretical model which states that the final droplet volume (Vf) scales with the Peclét number (Pe) of the flow during formation by the solvent exchange process, that is Vf âˆ¼ Pe3/4, and the nanodroplets demonstrate excellent ability as extractant for rhodamine 6G and copper ions from water. Surprisingly, the confined volume of gDES surface nanodroplets enables fast and controlled formation of Cu (II)-decanoate crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA