RESUMO
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.
Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismoRESUMO
Small molecules possessing multiple proton-accessible sites are important not only to many biological systems but also to host-guest chemistry; their protonation states are causal to boosting or hindering specific host-guest interactions. However, determining the protonation site is not trivial. Herein, we conduct electrospray ionization ion mobility spectrometry-mass spectrometry to imipramine, a known molecule with two protonation sites, based on the introduction of cucurbit[7]uril as a host molecule. For protonated imipramine, the proposed strategy allows clear distinction of the two protomers as host-guest complex ions and can be leveraged to capture the energetically less preferable protomer of the protonated imipramine.
RESUMO
A continuous flow methodology for the facile and high-yielding synthesis of the porphyrin-based self-assembled organic cage, P12 L24 is reported, along with the serendipitous discovery of a kinetic product, P9 L18 cage, which has been characterized by MALDI-TOF MS, NMR, and AFM analysis. A theoretical study suggests a tricapped trigonal prismatic geometry for P9 L18 . Unlike P12 L24 , P9 L18 is unstable and readily decomposes into monomers and small oligomers. While the batch synthesis produces only the thermodynamic product P12 L24 , the continuous flow process generates not only the thermodynamic product but also kinetic products, such as P9 L18 , illustrating the advantages of the continuous flow process for the synthesis of self-assembled cages and the exploration of new non-equilibrium assemblies.
RESUMO
Protein mutations alter protein-protein interactions that can lead to a number of illnesses. Mutations in lamin A (LMNA) have been reported to cause laminopathies. However, the proteins associated with the LMNA mutation have mostly remained unexplored. Herein, a new chemical tool for proximal proteomics is reported, developed by a combination of proximity chemical tagging and a bio-orthogonal supramolecular latching based on cucurbit[7]uril (CB[7])-based host-guest interactions. As this host-guest interaction acts as a noncovalent clickable motif that can be unclicked on-demand, this new chemical tool is exploited for reliable detection of the proximal proteins of LMNA and its mutant that causes laminopathic dilated cardiomyopathy (DCM). Most importantly, a comparison study reveals, for the first time, mutant-dependent alteration in LMNA proteomic environments, which allows to identify putative laminopathic DCM-linked proteins including FOXJ3 and CELF2. This study demonstrates the feasibility of this chemical tool for reliable proximal proteomics, and its immense potential as a new research platform for discovering biomarkers associated with protein mutation-linked diseases.
Assuntos
Cardiomiopatia Dilatada , Neoplasias Cutâneas , Humanos , Proteômica , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Mutação , Biomarcadores , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas CELF/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismoRESUMO
Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes (PBs), that allow facile transmembrane transport of glucose and fructose through their windows. PBs show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PBs blocks the monosaccharide transport. In vitro cell experiment shows that PBs transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PBs. The monosaccharide-selective transport ability of PBs is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.
Assuntos
Frutose , Glucose , Glucose/metabolismo , Monossacarídeos , Proteínas de Transporte de Monossacarídeos/metabolismo , Transporte Biológico , Proteínas Facilitadoras de Transporte de GlucoseRESUMO
In this study, the distinctive behavior of cucurbit[n]uril (CB[n]), which captures a variety of alkali halide clusters inside the cavity during the droplet evaporation, has been investigated by using ion mobility spectrometry-mass spectrometry. Complexes of CB[7] with various alkali chloride cluster cations or anions generated during the electrospray ionization were studied, and their collision cross-section (CCS) values were obtained to determine whether these clusters were trapped inside the cavity or not. It was found that the clusters smaller than a specific critical size were trapped inside the CB[7] cavity in the gas phase, although trapping of alkali halide clusters at the given concentration is supposed to be unfavorable in solution. We suggest that the rapid solvent evaporation rapidly increases ion concentrations and subsequently forms alkali-chloride contact ion pairs; therefore, it may provide a specific environment to enable the formation of the inclusion complexes.
RESUMO
Inverse-electron-demand Diels-Alder reaction (IEDDA) between fullerenes and 1,2,4,5-tetrazine generally requires harsh conditions and long reaction times due to their strong electron-accepting nature. Herein, we report a dramatic enhancement in the reactivity of the fullerenes (C60 /C70 )-tetrazine reaction inside a porous Zn-porphyrinic cage (Zn-PB) under sustainable conditions by installing a tetrazine-based axle (LA) via metal-ligand coordination bond, which modulates the cavity size to facilitate the encapsulation of fullerenes. Upon encapsulation, the close proximity of fullerenes and the tetrazine group of LA dramatically increase their reactivity towards the IEDDA reaction to form fullerene-tetrazine adducts. Furthermore, the C60 -tetrazine adduct is rearranged upon hydration to a bent-shaped C60 -pyrazoline adduct that can be released from the Zn-PB cavity in the presence of excess LA, thus catalyzing the formation of C60 -pyrazoline adduct inside Zn-PB without product inhibition.
RESUMO
Spatiotemporal control of chemical cascade reactions within compartmentalized domains is one of the difficult challenges to achieve. To implement such control, scientists have been working on the development of various artificial compartmentalized systems such as liposomes, vesicles, polymersomes, etc. Although a considerable amount of progress has been made in this direction, one still needs to develop alternative strategies for controlling cascade reaction networks within spatiotemporally controlled domains in a solution, which remains a non-trivial issue. Herein, we present the utilization of audible sound induced liquid vibrations for the generation of transient domains in an aqueous medium, which can be used for the control of cascade chemical reactions in a spatiotemporal fashion. This approach gives us access to highly reproducible spatiotemporal chemical gradients and patterns, in situ growth and aggregation of gold nanoparticles at predetermined locations or domains formed in a solution. Our strategy also gives us access to nanoparticle patterned hydrogels and their applications for region specific cell growth.
Assuntos
Ouro , Nanopartículas Metálicas , Lipossomos , Som , VibraçãoRESUMO
Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g-1 of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3 - with Cl- in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl-) up to 7.2 mmol g-1.
RESUMO
Aggregation of amyloidogenic proteins causing neurodegenerative diseases is an uncontrollable and contagious process that is often associated with lipid membranes in a highly complex physiological environment. Although several approaches using natural cells and membrane models have been reported, systematic investigations focusing on the association with the membranes are highly challenging, mostly because of the lack of proper molecular tools. Here, we report a new supramolecular approach using a synthetic cell system capable of controlling the initiation of protein aggregation and mimicking various conditions of lipid membranes, thereby enabling systematic investigations of membrane-dependent effects on protein aggregation by visualization. Extending this strategy through concurrent use of synthetic cells and natural cells, we demonstrate the potential of this approach for systematic and in-depth studies on interrogating inter- and intracellularly transmittable protein aggregation. Thus, this new approach offers opportunities for gaining insights into the pathological implications of contagious protein aggregation associated with membranes for neurotoxicity.
Assuntos
Células Artificiais , Proteínas Amiloidogênicas/metabolismo , Membrana Celular/metabolismo , Humanos , Lipídeos , Agregados Proteicos , Agregação Patológica de ProteínasRESUMO
We report a bottom-up approach to immobilize catalysts into MOFs, including copper halides and gold chloride in a predictable manner. Interestingly, the structures of MOFs bearing NHC metal complexes maintained a similar 4-fold interpenetrated cube. They exhibited exceptionally high porosity despite the interpenetrated structure and showed good stability in various solvents. Moreover, these MOFs possess high size activity depending on the size of the substrates in various reactions, compared to homogeneous catalysis. Also, the high catalytic activity of MOFs can be preserved 4 times without significant loss of crystallinity. Incorporation of the various metal complexes into MOFs allows for the preparation of functional MOFs for practical applications.
RESUMO
A rationally designed supramolecular FRET pair consisting of cyanine3-cucurbit[7]uril (Cy3-CB[7]) and boron-dipyrromethene 630/650-adamantylammonium (BDP-AdA) can be used to visualize organelle-specific autophagy events. The intracellular accumulations of Cy3-CB[7] in lysosomes and BDP-AdA in lipid droplets (LDs) and the formation of an intracellular host-guest complex between Cy3-CB[7] and BDP-AdA resulting in FRET signals allow us to visualize the fusion of LDs with lysosomes, namely, lipophagy. This study demonstrates the potential of supramolecular imaging based on bio-orthogonal host-guest interactions in the investigation of selective autophagy events.
Assuntos
Autofagia , Hidrocarbonetos Aromáticos com Pontes/química , Transferência Ressonante de Energia de Fluorescência , Imidazóis/química , Células HeLa , Humanos , Substâncias Macromoleculares/química , Estrutura MolecularRESUMO
Here, we report the synthesis of a truncated cone-shaped triangular porphyrinic macrocycle, P3 L3 , via a single step imine condensation of a cis-diaminophenylporphyrin and a bent dialdehyde-based linker as building units. X-ray diffraction analysis reveals that the truncated cone-shaped P3 L3 molecules are stacked on top of each other by πâ¯π and CHâ¯π interactions, to form 1.7â nm wide hollow columns in the solid state. The formation of the triangular macrocycle is corroborated by quantum chemical calculations. The permanent porosity of the P3 L3 crystals is demonstrated by several gas sorption experiments and powder X-ray diffraction analysis.
RESUMO
The synthesis of sandwich-shaped multinuclear silver complexes with planar penta- and tetranuclear wheel-shaped silver units and a central anion, [Agn(2-HPB)2(A-)](OTf-)n-1, nAgA, n = 4 or 5 and A- = OH- or F- or Cl-, is reported, along with complete spectroscopic and structural characterization. An NMR mechanistic study reveals that silver complexes were formed in the following order: 2Ag â 3AgH2O â 5AgOH â 4AgOH. The central hydroxides in 4AgOH and 5AgOH exhibit exotic physical properties due to the confined environment inside the complex. The size of these silver wheels can be tuned by changing the central anion or extracting/adding one silver atom. This study provides the facile way to synthesize discrete wheel-shaped multinuclear silver complexes and provides valuable insights into the dynamics of the self-assembly process.
RESUMO
The identification of each cell type is essential for understanding multicellular communities. Antibodies set as biomarkers have been the main toolbox for cell-type recognition, and chemical probes are emerging surrogates. Herein we report the first small-molecule probe, CDgB, to discriminate B lymphocytes from T lymphocytes, which was previously impossible without the help of antibodies. Through the study of the origin of cell specificity, we discovered an unexpected novel mechanism of membrane-oriented live-cell distinction. B cells maintain higher flexibility in their cell membrane than T cells and accumulate the lipid-like probe CDgB more preferably. Because B and T cells share common ancestors, we tracked the cell membrane changes of the progenitor cells and disclosed the dynamic reorganization of the membrane properties over the lymphocyte differentiation progress. This study casts an orthogonal strategy for the small-molecule cell identifier and enriches the toolbox for live-cell distinction from complex cell communities.
Assuntos
Linfócitos B/citologia , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Linfócitos T/citologia , Animais , Linfócitos B/química , Linfócitos B/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Membrana Celular/química , Citometria de Fluxo , Lipidômica , Camundongos , Linfócitos T/química , Linfócitos T/imunologiaRESUMO
Pupil tracking data are collected through the use of an infrared camera, and a head-mounted system [1]. The head-mounted system detects the relative pupil position and adjusts the mouse cursor position accordingly. The data are available for comparison of eye tracking with saccadic movements (with the head fixed in space) versus those from smooth movements (with the head moving in space). The analysis comprises two experiments for both types of eye tracking, which are performed with ten trials each for two participants. In the first experiment, the participant attempts to place the cursor into a target boundary of varying sizes. In the second experiment, the participant attempts to move the cursor to a target location within the shortest time.
RESUMO
Herein we report transient out-of-equilibrium self-assembly of molecules operated by gaseous fuel mixtures. The combination of an active gaseous chemical fuel and an inert gas or compressed air, which assists the degassing of the gaseous fuel from the solution, drives the transient self-assembly process. The gaseous nature of the fuel as well as the exhaust helps in their easy removal and thereby prevents their accumulation within the system and helps in maintaining the efficiency of the transient self-assembly process. The strategy is executed with a rather simple experimental set up and operates at ambient temperatures. Our approach may find use in the development of smart materials suitable for applications such as temporally active gas sensing and sequestration.
RESUMO
The binding dynamics of the trans-1-methyl-4-(4-hydroxystyryl)pyridinium cation (HSP+) to cucurbit[6]uril (CB[6]) in the presence of Na+ cations were studied to establish the effect of the relative concentrations of the system's components (HSP+, CB[6], and Na+) on these dynamics. The formation of the HSP+@CB[6] complex was temporally uncoupled from the photoisomerization of trans-HSP+, while a nonlinear effect of the Na+ cation concentration on the HSP+@CB[6] dynamics was observed. This nonlinearity is a consequence of Na+ having the opposite effect on the association and dissociation rate constants for the HSP+@CB[6] complex, creating a conceptual framework for using such nonlinearities to control multistep reactions in cucurbit[n]uril chemistry.
RESUMO
Naturally occurring spatiotemporal patterns typically have a predictable pattern design and are reproducible over several cycles. However, the patterns obtained from artificially designed out-of-equilibrium chemical oscillating networks (such as the Belousov-Zhabotinsky reaction for example) are unpredictable and difficult to control spatiotemporally, albeit reproducible over subsequent cycles. Here, we show that it is possible to generate reproducible spatiotemporal patterns in out-of-equilibrium chemical reactions and self-assembling systems in water in the presence of sound waves, which act as a guiding physical stimulus. Audible sound-induced liquid vibrations control the dissolution of atmospheric gases (such as O2 and CO2) in water to generate spatiotemporal chemical patterns in the bulk of the fluid, segregating the solution into spatiotemporal domains having different redox properties or pH values. It further helps us in the organization of transiently formed supramolecular aggregates in a predictable spatiotemporal manner.