Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Nat Commun ; 15(1): 8481, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353987

RESUMO

Neutrophils are critical mediators of both the initiation and resolution of inflammation after myocardial infarction (MI). Overexuberant neutrophil signaling after MI exacerbates cardiomyocyte apoptosis and cardiac remodeling while neutrophil apoptosis at the injury site promotes macrophage polarization toward a pro-resolving phenotype. Here, we describe a nanoparticle that provides spatiotemporal control over neutrophil fate to both stymie MI pathogenesis and promote healing. Intravenous injection of roscovitine/catalase-loaded poly(lactic-co-glycolic acid) nanoparticles after MI leads to nanoparticle uptake by circulating neutrophils migrating to the infarcted heart. Activated neutrophils at the infarcted heart generate reactive oxygen species, triggering intracellular release of roscovitine, a cyclin-dependent kinase inhibitor, from the nanoparticles, thereby inducing neutrophil apoptosis. Timely apoptosis of activated neutrophils at the infarcted heart limits neutrophil-driven inflammation, promotes macrophage polarization toward a pro-resolving phenotype, and preserves heart function. Modulating neutrophil fate to tune both inflammatory and reparatory processes may be an effective strategy to treat MI.


Assuntos
Apoptose , Inflamação , Macrófagos , Infarto do Miocárdio , Nanopartículas , Neutrófilos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Roscovitina , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Animais , Neutrófilos/imunologia , Neutrófilos/metabolismo , Inflamação/patologia , Nanopartículas/química , Apoptose/efeitos dos fármacos , Roscovitina/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Ácido Poliglicólico/química , Ácido Láctico/metabolismo , Modelos Animais de Doenças , Humanos
2.
J Med Food ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388119

RESUMO

Skeletal muscle atrophy refers to the loss of muscle strength and mass due to decreased protein synthesis or increased protein degradation. Various conditions can cause muscle atrophy, including aging, heart disease, chronic illness, obstructive pulmonary disease, kidney failure, diabetes, AIDS, cancer, sepsis, and steroid use. Various natural materials have been studied for the prevention of muscle atrophy. In this study, we found that extracts from the sprouts of purple wheat, Arriheuk, prevented muscle atrophy in vitro and in vivo. Arriheuk wheat sprouts extract inhibited the expression of muscle protein breakdown factors, which were increased by dexamethasone, and improved muscle strength. In C2C12 myotubes, Arriheuk wheat sprout extract (ARE) protected against dexamethasone-induced muscle atrophy by potentiating Akt/mammalian target of rapamycin and AMP-activated protein kinase (AMPK)/forkhead box O3 (AMPK/Foxo3) signaling and inhibiting the expression of Atrogin-1, muscle RING-finger protein-1 (MuRF1), and Myostatin. In addition, the administration of ARE in an animal model of muscle atrophy induced by dexamethasone prevented myocardial and muscle strength loss by regulating the expression of muscle atrophy-related factors by affecting AMPK/Foxo3 signaling. Taken together, these results suggest that Arriheuk wheat sprouts extract effectively alleviates muscle atrophy by regulating the synthesis and breakdown of muscle proteins.

3.
Front Cardiovasc Med ; 11: 1450757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399509

RESUMO

Background: Despite the essential role of ectopic osteogenic calcium-phosphate metabolism in the development of calcific aortic valve disease (CAVD), the implications of high serum phosphate levels in CAVD development are not fully understood. Methods: Asymptomatic individuals who underwent health screening using serial cardiac computed tomography (CT) and echocardiography were selected from a multicenter registry. CAVD was identified and quantified on CT images using the aortic valve calcification (AVC) score. The associations between initial serum phosphate levels and the presence of baseline CAVD, development of new CAVD, and the AVC score progression rate were investigated using multivariable regression models. Results: A total of 736 individuals were selected for analysis, and the median interscan duration was 36.4 months. On initial CT, 83 (13.7%) participants had baseline CAVD, while 52 (7.0%) individuals developed new CAVD during follow-up. Serum phosphate levels were not associated with a higher probability of baseline CAVD but were predictive of newly developed CAVD (odds ratio per 1 mg/dl, 1.05; 95% confidence interval, 1.01-1.10; p = 0.02). Higher phosphate levels were also associated with a faster AVC score progression in those with baseline CAVD (regression coefficient per 1 mg/dl, 15.55 Agatston units/year; 95% confidence interval, 6.02-25.07; p < 0.01), an association which remained significant when the analysis was extended to include newly developed CAVD. Conclusion: Even slight elevations in serum phosphate are associated with accelerated CAVD progression from an early stage. Further studies are needed to investigate whether the regulation of phosphate metabolism can slow the progression of CAVD to aortic stenosis.

4.
Biochim Biophys Acta Mol Cell Res ; : 119856, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357548

RESUMO

Obesity is recognized as a significant contributor to the onset of kidney disease. However, the key processes involved in the development of kidney disease in obese individuals are not well understood. Here, we investigated the effects of high-fat diet (HFD)-induced obesity on folic acid (FA)-induced kidney injury in mice. Mice were fed an HFD for 12 weeks to induce obesity, followed by an additional intraperitoneal injection of FA. The results showed that mice fed HFD developed higher levels of kidney damage than those in the chow group. In contrast, mice exposed to both HFD and FA showed less fibrosis and inflammatory responses compared to the FA only treated group. Furthermore, the HFD with FA group exhibited elevated lipid accumulation in the kidney and reduced expression of mitochondrial proteins compared to the FA-treated group. Under in vitro experimental conditions, we found that lipid accumulation induced by oleic acid treatment reduced inflammatory and fibrotic responses in both renal tubules and fibroblasts. Finally, RNA sequencing analysis revealed that the inflammasome and pyroptosis signaling pathways were significantly increased in the HFD group with FA injection. In summary, these findings suggest that obesity increases renal injury due to a lack of appropriate inflammatory, fibrotic, and metabolic responses and the activation of the inflammasome and pyroptosis signaling pathways.

5.
Prev Nutr Food Sci ; 29(3): 376-383, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39371508

RESUMO

This study investigated the antioxidative characteristics of Zea mays L. purple corn cob and husk extract (PCHE) and its potential protective effects against blue light (BL)-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-accumulated ARPE-19 retinal pigment epithelial cells. PCHE had a 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity and Trolox equivalent antioxidant capacity of 1.28±0.43 mM Trolox equivalents (TE)/g and 2,545.41±34.13 mM TE/g, respectively. Total content of anthocyanins, polyphenols, and flavonoids in the PCHE was 11.13±0.10 mg cyanidin-3-glucoside equivalents/100 g, 227.90±7.38 mg gallic acid equivalents/g, and 117.75±2.46 mg catechin equivalents/g, respectively. PCHE suppressed the accumulation of A2E and the photooxidation caused by BL in a dose-dependent manner. After initial treatment with 25 µM/mL A2E and BL, ARPE-19 cells showed increased cell viability following additional treatment with 15 µg/mL PCHE while the expression of the p62 sequestosome 1 decreased, whereas that of heme oxygenase-1 protein increased compared with that in cells without PCHE treatment. This suggests that PCHE may slow the autophagy induced by BL exposure in A2E-accumulated retinal cells and protect them against oxidative stress.

6.
Nanomaterials (Basel) ; 14(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39269116

RESUMO

The hybridization of single-walled carbon nanotubes (SWCNTs) and Cu nanoparticles offers a promising strategy for creating highly conductive and mechanically stable fillers for flexible printed electronics. In this study, we report the ultrafast synthesis of SWCNT/Cu hybrid nanostructures and the fabrication of flexible electrodes under ambient conditions through a laser-induced photo-thermal reaction. Thermal energy generated from the nonradiative relaxation of the π-plasmon resonance of SWCNTs was utilized to reduce the Cu-complex (known as a metal-organic decomposition ink) into Cu nanoparticles. We systematically investigated the effects of SWCNT concentration and output laser power on the structural and electrical properties of the SWCNT/Cu hybrid electrodes. The SWCNT/Cu electrodes achieved a minimum electrical resistivity of 46 µohm·cm, comparable to that of the metal-based printed electrodes. Mechanical bending tests demonstrated that the SWCNT/Cu electrodes were highly stable and durable, with no significant deformation observed even after 1000 bending cycles. Additionally, the electrodes showed rapid temperature increases and stable Joule heating performance, reaching temperatures of nearly 80 °C at an applied voltage of less than 3.5 V.

7.
J Nutr Biochem ; 134: 109765, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255902

RESUMO

Calorie restriction (CR) is known to confer health benefits, including longevity and disease prevention. Although CR is promising in preventing chronic kidney disease (CKD), its potential impact on the progression of kidney fibrosis from acute kidney injury (AKI) to CKD remains unclear. Here, we present evidence that CR exacerbates renal damage in a mouse model of folic acid (FA)-induced renal fibrosis by altering mitochondrial metabolism and inflammation. Mice subjected to CR (60% of ad libitum) for three days were subjected to high dose of FA (250 mg/kg) injection and maintained under CR for an additional week before being sacrificed. Biochemical analyses showed that CR mice exhibited increased kidney injury and fibrosis. RNA sequencing analysis demonstrated decreased electron transport and oxidative phosphorylation (OXPHOS) in CR kidneys with injury, heightened inflammatory, and fibrotic responses. CR significantly decreased OXPHOS gene and protein levels and reduced ß-oxidation-associated proteins in the kidney. To determine whether defects in mitochondrial metabolism is associated with inflammation in the kidney, further in vitro experiments were performed. NRK52E kidney epithelial cells were treated with antimycin A to induce mitochondrial damage. Antimycin A treatment significantly increased chemokine expression via a STING-dependent pathway. Serum restriction in NRK49F kidney fibroblasts was observed to enhance the fibrotic response induced by TGFß under in vitro conditions. In summary, our results indicate that CR exacerbates fibrosis and inflammatory responses in the kidney by altering mitochondrial metabolism, highlighting the importance of adequate energy supply for an effective response to AKI and fibrosis development.

8.
Biol Pharm Bull ; 47(9): 1557-1564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313392

RESUMO

Oxidative stress plays a crucial role in the development and progression of various kidney diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is the primary transcription factor that protects cells from oxidative stress by regulating cytoprotective genes including those involved in the antioxidant glutathione (GSH) pathway. GSH maintains cellular redox status and affects redox signaling, cell proliferation, and cell death. Antimycin A, an inhibitor of complex III of the electron transport chain, causes oxidative stress and reduces GSH levels. In this study, we induced mitochondrial damage in rat renal proximal tubular cells using antimycin A and investigated cellular viability and levels of NRF2 and GSH. Treatment with antimycin A altered the expression of antioxidant genes, including reduction in the transcription of glutathione-cysteine ligase subunits (Gclc and Gclm) and glutathione reductase (Gsr1), followed by a reduction in total GSH content with a concomitant decrease in NRF2 protein expression. AR-20007, previously described as an NRF2 activator, stabilizes and increases NRF2 protein expression in cells. By stimulating NRF2, AR-20007 increased the expression of antioxidant and detoxifying enzymes, thereby enhancing protection against oxidative stress induced by antimycin A. These data suggest that NRF2 activation effectively inhibits antimycin A-induced oxidative stress and that NRF2 may be a promising therapeutic target for preventing cell death during acute kidney injury.


Assuntos
Antimicina A , Células Epiteliais , Glutationa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Antimicina A/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Glutationa/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Morte Celular/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo
9.
Biomark Res ; 12(1): 52, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816856

RESUMO

Protein tyrosine kinase 2 (PTK2), epidermal growth factor receptor (EGFR), and toll-like receptor (TLRs) are amplified in non-small cell lung cancer (NSCLC). However, the functional and clinical associations between them have not been elucidated yet in NSCLC. By using microarray data of non-small cell lung cancer (NSCLC) tumor tissues and matched normal tissues of 42 NSCLC patients, the genetic and clinical associations between PTK2, EGFR, and TLRs were analyzed in NSCLC patients. To verify the functional association, we generated PTK2-knockout (PTK2-KO) lung cancer cells by using CRISPR-Cas9 gene editing method, and performed in vitro cancer progression assay, including 3D tumor spheroid assay, and in vivo xenografted NSG (NOD/SCID/IL-2Rγnull) mouse assay. Finally, therapeutic effects targeted to PTK2 in lung cancer in response to EGF and TLR agonists were verified by using its inhibitor (Defactinib). In summary, we identified that up-regulated PTK2 might be a reliable marker for EGFR- or TLRs-induced lung cancer progression in NSCLC patients via the regulation of the cross-talk between EGFR- and TLRs-mediated signaling. This study provides a theoretical basis for the therapeutic intervention of PTK2 targeting EGFR- or TLRs-induced lung cancer progression.

10.
Environ Int ; 187: 108709, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723457

RESUMO

Heavy metals are commonly released into the environment through industrial processes such as mining and refining. The rapid industrialization that occurred in South Korea during the 1960s and 1970s contributed significantly to the economy of the country; however, the associated mining and refining led to considerable environmental pollution, and although mining is now in decline in South Korea, the detrimental effects on residents inhabiting the surrounding areas remain. The bioaccumulation of toxic heavy metals leads to metabolic alterations in human homeostasis, with disruptions in this balance leading to various health issues. This study used metabolomics to explore metabolomic alterations in the plasma samples of residents living in mining and refining areas. The results showed significant increases in metabolites involved in glycolysis and the surrounding metabolic pathways, such as glucose-6-phosphate, phosphoenolpyruvate, lactate, and inosine monophosphate, in those inhabiting polluted areas. An investigation of the associations between metabolites and blood clinical parameters through meet-in-the-middle analysis indicated that female residents were more affected by heavy metal exposure, resulting in more metabolomic alterations. For women, inhabiting the abandoned mine area, metabolites in the glycolysis and pentose phosphate pathways, such as ribose-5-phosphate and 3-phosphoglycerate, have shown a negative correlation with albumin and calcium. Finally, Mendelian randomization(MR) was used to determine the causal effects of these heavy metal exposure-related metabolites on heavy metal exposure-related clinical parameters. Metabolite biomarkers could provide insights into altered metabolic pathways related to exposure to toxic heavy metals and improve our understanding of the molecular mechanisms underlying the health effects of toxic heavy metal exposure.


Assuntos
Exposição Ambiental , Metais Pesados , Humanos , Metais Pesados/sangue , Feminino , República da Coreia , Masculino , Adulto , Metabolômica , Mineração , Pessoa de Meia-Idade , Poluição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue
11.
Aging Cell ; 23(8): e14184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687090

RESUMO

Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.


Assuntos
Envelhecimento , Senescência Celular , Fibrose , Inflamação , Receptor PAR-2 , Insuficiência Renal Crônica , Animais , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Envelhecimento/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Food Sci Biotechnol ; 33(5): 1113-1122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440677

RESUMO

This study aimed to evaluate the properties of amylose-lipid complexes in rice and wheat flours utilizing pullulanase as a debranching enzyme. Rice and flour were both treated with pullulanase before being combined with free fatty acids to form compounds denoted as RPF (rice-pullulanase-fatty acid) and FPF (flour-pullulanase-fatty acid), respectively. Our results showed that RPF and FPF had higher complex index and lower hydrolysis values than enzyme-untreated amylose-lipid complexes. Furthermore, RPF and FPF demonstrated lower swelling power and higher water solubility values, indicating changes in the physical properties of the starches. In vivo studies showed that RPF and FPF caused a smaller increase in blood glucose levels than untreated rice and flour, highlighting their potential use as functional food ingredients. These findings provide valuable information for the development of novel rice-and wheat-based foods with improved nutritional and physiological properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01411-0.

13.
PLoS One ; 19(3): e0299899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442122

RESUMO

BACKGROUND: Developing contrast-associated acute kidney injury (CA-AKI) following percutaneous coronary intervention (PCI) is closely related to patient-related risk factors as well as contrast administration. The diagnostic and prognostic roles of neutrophil gelatinase-associated lipocalin (NGAL) in CA-AKI following PCI are not well established. METHODS: Consecutive patients undergoing PCI were enrolled prospectively. CA-AKI was defined as an increase in the serum creatinine level ≥0.3 mg/dL within 48 hours or ≥1.5 times the baseline within 7 days after PCI. Serum NGAL concentrations were determined immediately before and 6 hours after PCI. The participants were classified into four NGAL groups according to the pre- and post-PCI NGAL values at 75th percentile. RESULTS: CA-AKI occurred in 38 (6.4%) of 590 patients. With chronic kidney disease status (hazard ratio [HR] 1.63, 95% confidence interval [CI]: 1.06-2.52), NGAL groups defined by the combination of pre- and 6 h post-PCI values were independently associated with the occurrence of CA-AKI (HR 1.69, 95% CI: 1.16-2.45). All-cause mortality for 29-month follow-ups was different among NGAL groups (log-rank p<0.001). Pre-PCI NGAL levels significantly correlated with baseline cardiac, inflammatory, and renal markers. Although post-PCI NGAL levels increased in patients with larger contrast administration, contrast media made a relatively limited contribution to the development of CA-AKI. CONCLUSION: In patients undergoing PCI, the combination of pre- and post-PCI NGAL values may be a useful adjunct to current risk-stratification of CA-AKI and long-term mortality. CA-AKI is likely caused by systemic reserve deficiency rather than contrast administration itself.


Assuntos
Injúria Renal Aguda , Intervenção Coronária Percutânea , Insuficiência Renal Crônica , Humanos , Lipocalina-2 , Intervenção Coronária Percutânea/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Rim
14.
Nutrients ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542804

RESUMO

We aimed to identify the mechanism underlying the preventive effects of non-alcoholic fatty liver disease (NAFLD) through Platycodi Radix consumption using liver proteomic and bioinformatic analysis. C57BL/6J mice were categorized into three groups: those receiving a standard chow diet (NCD), those on a high-fat diet (HFD), and those on an HFD supplemented with 5% Platycodi Radix extract (PRE). After a 12-week period, PRE-fed mice exhibited a noteworthy prevention of hepatic steatosis. Protein identification and quantification in liver samples were conducted using LC-MS/MS. The identified proteins were analyzed through Ingenuity Pathway Analysis software, revealing a decrease in proteins associated with FXR/RXR activation and a concurrent increase in cholesterol biosynthesis proteins in the PRE-treated mouse liver. Subsequent network analysis predicted enhanced bile acid synthesis from these proteins. Indeed, the quantity of bile acids, which was reduced in HFD conditions, increased in the PRE group, accompanied by an elevation in the expression of synthesis-related proteins. Our findings suggest that the beneficial effects of PRE in preventing hepatic steatosis may be mediated, at least in part, through the modulation of FXR/RXR activation, cholesterol biosynthesis, and bile acid synthesis pathways.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Colesterol/metabolismo , Ácidos e Sais Biliares/metabolismo
15.
J Food Sci Technol ; 61(5): 897-906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487284

RESUMO

Sensometrics assesses sensory perspectives in consumer research using statistics and various methodologies. This study evaluated consumer responses to hot and cold germinated-wheat beverages in check-all-that-apply (CATA) and rate-all-that-apply (RATA) assessments using sensometric statistical approaches, including Cochran's Q test, penalty-lift analysis, and multiple factor analysis. Hot beverages (HB) were prepared by infusion using different amounts of germinated wheat (HB_1: 0.8 g/100 mL, HB_2: 2 g/100 mL, and HB_3: 4 g/100 mL), while cold beverages (CB) were made using cooled boiled germinated wheat with varying concentrations (CB_1: 25 g/L, CB_2: 50 g/L, and CB_3: 75 g/L). Results of the CATA study suggested that consumers preferred HB_1 and CB_1 because they expressed the sensory characteristics associated with liking, including "barley tea flavor", "neat taste", and "nutty taste", while "bitterish taste", "stuffy taste", and "astringent taste" were undesirable attributes. "Browning index", "barley tea odor", and "nutty taste" showed significant differences (p < 0.05) in both favorable and unfavorable rating scores. Overall, CB_1 elicited a clear taste and odor with fewer negative emotions. These findings demonstrate the usefulness of the sensometric approach combined with CATA and RATA analyses to obtain more easily interpretable results on the sensory perception of consumers to new food products. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05884-z.

16.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393031

RESUMO

The processing of fishery resources results in the production of a growing quantity of byproducts, including heads, skins, viscera, intestines, frames, and fillet cutoffs. These byproducts are either wasted or utilized for the production of low-value items and fish oil. Typically, fish processing industries use only 25%, while the remaining 75% is considered as waste by-products. This review presents a comprehensive review on the extraction of collagen from fish byproducts, highlighting numerous techniques including acid-soluble collagen (ASC), enzyme-soluble collagen (ESC), ultrasound extraction, deep eutectic solvent (DES) extraction, and supercritical fluid extraction (SFE). A detailed explanation of various extraction parameters such as time, temperature, solid to liquid (S/L) ratio, and solvent/pepsin concentration is provided, which needs to be considered to optimize the collagen yield. Moreover, this review extends its focus to a detailed investigation of fish collagen applications in the biomedical sector, food sector, and in cosmetics. The comprehensive review explaining the extraction methods, extraction parameters, and the diverse applications of fish collagen provides a basis for the complete understanding of the potential of fish-derived collagen. The review concludes with a discussion of the current research and a perspective on the future development in this research field.


Assuntos
Colágeno , Peixes , Animais , Resíduos , Temperatura , Óleos de Peixe
19.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001800

RESUMO

Chronic kidney disease (CKD) is a kidney structure and function abnormality. CKD development and progression are strongly influenced by oxidative stress and inflammatory responses, which can lead to tubulointerstitial fibrosis. Unfortunately, there are no effective or specific treatments for CKD. We investigated the potential of the thiobarbiturate-derived compound MHY1025 to alleviate CKD by reducing oxidative stress and inflammatory responses. In vitro experiments using NRK52E renal tubular epithelial cells revealed that MHY1025 significantly reduced LPS-induced oxidative stress and inhibited the activation of the NF-κB pathway, which is involved in inflammatory responses. Furthermore, treatment with MHY1025 significantly suppressed the expression of fibrosis-related genes and proteins induced by TGFß in NRK49F fibroblasts. Furthermore, we analyzed the MHY1025 effects in vivo. To induce kidney fibrosis, mice were administered 250 mg/kg folic acid (FA) and orally treated with MHY1025 (0.5 mg/kg/day) for one week. MHY1025 effectively decreased the FA-induced inflammatory response in the kidneys. The group treated with MHY1025 exhibited a significant reduction in cytokine and chemokine expression and decreased immune cell marker expression. Decreased inflammatory response was associated with decreased tubulointerstitial fibrosis. Overall, MHY1025 alleviated renal fibrosis by directly modulating renal epithelial inflammation and fibroblast activation, suggesting that MHY1025 has the potential to be a therapeutic agent for CKD.

20.
Exp Mol Med ; 55(10): 2177-2189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779138

RESUMO

Enhancing adult neurogenesis in the brain has been suggested as a potential therapeutic strategy for AD. We developed a screening platform, ATRIVIEW®, for molecules that activate neuronal differentiation of adult mouse NSCs. The most potent hit from an FDA-approved drug library was SNR1611 (trametinib), a selective MEK1/2 inhibitor. We found that trametinib increases the levels of P15INK4b and Neurog2, suggesting a mechanism by which MEK1/2 inhibition induces neuronal differentiation. Oral administration of trametinib increased adult neurogenesis in the dentate gyrus and subventricular zone of the 5XFAD AD mouse model. Surprisingly, we also found that trametinib enhanced adult neurogenesis in the cortex. Consequently, trametinib rescued AD pathologies such as neuronal loss and cognitive impairment in 5XFAD mice. Finally, trametinib induced neurogenic differentiation of NSCs derived from AD patient iPSCs, which suggests its potential therapeutic application. Altogether, we suggest that restoration of endogenous adult neurogenesis by trametinib may be a promising therapeutic approach to AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/patologia , Camundongos Transgênicos , Neurogênese , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...