Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(23): 11156-11162, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38623744

RESUMO

Understanding the behavior of materials in multi-dimensional architectures composed of atomically thin two-dimensional (2D) materials and three-dimensional (3D) materials has become mandatory for progress in materials preparation via various epitaxy techniques, such as van der Waals and remote epitaxy methods. We investigated the growth behavior of ZnO on monolayer MoS2 as a model system to study the growth of a 3D material on a 2D material, which is beyond the scope of remote and van der Waals epitaxy. The study revealed column-to-column alignment and inversion of crystallinity, which can be explained by combinatorial epitaxy, grain alignment across an atomically sharp interface, and a compliant substrate. The growth study enabled the formation of a ZnO/MoS2 heterostructure with type-I band alignment. Our findings will have a scientific impact on realizing 2D/3D heterostructures for practical device applications.

2.
Adv Sci (Weinh) ; 10(15): e2207481, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37012611

RESUMO

Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.

3.
ACS Nano ; 17(5): 4404-4413, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825770

RESUMO

Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.

4.
Nanoscale Adv ; 4(8): 1962-1969, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133406

RESUMO

Uniform size of Si nanowires (NWs) is highly desirable to enhance the performance of Si NW-based lithium-ion batteries. To achieve a narrow size distribution of Si NWs, the formation of bulk-like Si structures such as islands and chunks needs to be inhibited during nucleation and growth of Si NWs. We developed a simple approach to control the nucleation of Si NWs via interfacial energy tuning between metal catalysts and substrates by introducing a conductive diffusion barrier. Owing to the high interfacial energy between Au and TiN, agglomeration of Au nanoparticle catalysts was restrained on a TiN layer which induced the formation of small Au nanoparticle catalysts on TiN-coated substrates. The resulting Au catalysts led to the nucleation and growth of Si NWs on the TiN layer with higher number density and direct integration of the Si NWs onto current collectors without the formation of bulk-like Si structures. The lithium-ion battery anodes based on Si NWs grown on TiN-coated current collectors showed improved specific gravimetric capacities (>30%) for various charging rates and enhanced capacity retention up to 500 cycles of charging-discharging.

5.
ACS Nano ; 16(2): 2399-2406, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138803

RESUMO

Advances in epitaxy have enabled the preparation of high-quality material architectures consisting of incommensurate components. Remote epitaxy based on lattice transparency of atomically thin graphene has been intensively studied for cost-effective advanced device manufacturing and heterostructure formation. However, remote epitaxy on nongraphene two-dimensional (2D) materials has rarely been studied even though it has a broad and immediate impact on various disciplines, such as many-body physics and the design of advanced devices. Herein, we report remote epitaxy of ZnO on monolayer MoS2 and the realization of a whispering-gallery-mode (WGM) cavity composed of a single crystalline ZnO nanorod and monolayer MoS2. Cross-sectional transmission electron microscopy and first-principles calculations revealed that the nongraphene 2D material interacted with overgrown and substrate layers and also exhibited lattice transparency. The WGM cavity embedding monolayer MoS2 showed enhanced luminescence of MoS2 and multimodal emission.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443922

RESUMO

Recent advances in nanoscience have opened ways of recycling substrates for nanomaterial growth. Novel materials, such as atomically thin materials, are highly desirable for the recycling substrates. In this work, we report recycling of monolayer graphene as a growth template for synthesis of single crystalline ZnO nanowires. Selective nucleation of ZnO nanowires on graphene was elucidated by scanning electron microscopy and density functional theory calculation. Growth and subsequent separation of ZnO nanowires was repeated up to seven times on the same monolayer graphene film. Raman analyses were also performed to investigate the quality of graphene structure along the recycling processes. The chemical robustness of graphene enables the repetitive ZnO nanowire growth without noticeable degradation of the graphene quality. This work presents a route for graphene as a multifunctional growth template for diverse nanomaterials such as nanocrystals, aligned nanowires, other two-dimensional materials, and semiconductor thin films.

7.
Adv Mater ; 33(2): e2004827, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33215741

RESUMO

2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

8.
RSC Adv ; 10(23): 13655-13661, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35493009

RESUMO

Hierarchical architectures composed of nanomaterials in different forms are essential to improve the performance of lithium-ion battery (LIB) anodes. Here, we systematically studied the effects of hierarchical ZnO nanostructures on the electrochemical performance of LIBs. ZnO nanowire (NW) trunks were decorated with ZnO NWs or ZnO nanosheets (NSs) by successive hydrothermal synthesis to create hierarchical three-dimensional nanostructures. The branched ZnO NSs on the ZnO NW trunk exhibited a two-fold higher specific gravimetric capacity compared to ZnO NWs and branched ZnO NWs on ZnO NW trunks after 100 cycles of charging-discharging at 0.2C (197.4 mA g-1). The improvement in battery anode performance is attributable to the increased interfacial area between the electrodes and electrolyte, and the void space of the branched NSs that facilitates lithium ion transport and volume changes during cycling.

9.
ACS Sens ; 4(9): 2395-2402, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31339038

RESUMO

Transition metal dichalcogenides (TMDs) have attracted enormous attention in diverse research fields. Especially, gas sensors are considered in a promising application exploiting TMDs. However, the studies are confined to only major TMDs such as MoS2 and WS2. Particularly, the chemoresistive sensing properties of two-dimensional (2D) NbS2 have never been explored. For the first time, we report room temperature NO2 sensing characteristics of 2D NbS2 nanosheets and the sensing mechanisms using first-principles calculations based on density functional theory. The results demonstrate that the NbS2 edges possessing different configurations depending on synthetic conditions differ in the sensing ability of the TMD nanosheets. This study not only broadens the potential of 2D NbS2 for gas sensing applications, but also presents the important role of edge configuration of TMDs depending on synthetic conditions for further studies.


Assuntos
Técnicas de Química Analítica/instrumentação , Nióbio/química , Dióxido de Nitrogênio/análise , Temperatura , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Óxidos
10.
Nanoscale ; 11(6): 2966-2973, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30693930

RESUMO

Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures.

11.
BMC Res Notes ; 7: 788, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25374403

RESUMO

BACKGROUND: Otolaryngologists encounter cases of various foreign bodies in the oral and pharyngeal regions. One commonly found foreign body is a fish bone, ingested in most cases by carelessness or an accident. These foreign materials are removed by endoscopy or through a simple procedure. However, hypopharyngeal damage is rarely caused by a foreign body in the pharynx following the swallowing of a toothbrush. CASE PRESENTATION: A 44-year-old Asian male visited the emergency room with chief complaints of intraoral pain and dysphagia that had started on the same day. The patient had paranoid-type schizophrenia that began 10 years ago; he had been hospitalized and was being treated at another clinic, and was transferred to the emergency room by the medical staff after swallowing a toothbrush. We successfully removed a toothbrush located within the pharynx of a patient with a history of a psychologic disorder via surgery and conservative treatment. CONCLUSION: The case with this patient, and a rapid diagnosis as well as treatment is imperative. The presence and state of a foreign body must be determined through a careful physical examination and imaging, followed by the immediate removal of the foreign body, all while keeping in mind the possibility of accompanying damage to nearby tissues.


Assuntos
Deglutição , Faringe/lesões , Escovação Dentária/efeitos adversos , Adulto , Humanos , Masculino , Pescoço/diagnóstico por imagem , Faringe/diagnóstico por imagem , Faringe/cirurgia , Cuidados Pós-Operatórios , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...