Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 23(7): 1073-1083, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143872

RESUMO

Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.


Assuntos
Grupo dos Citocromos c/química , Heme/química , Bactérias/enzimologia , Grupo dos Citocromos c/metabolismo , Heme/análogos & derivados , Heme/genética , Mutação , Conformação Proteica
2.
Acc Chem Res ; 48(7): 1845-52, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26083801

RESUMO

Hemes are ubiquitous in biology and carry out a wide range of functions. The heme group is largely invariant across proteins with different functions, although there are a few variations seen in nature. The most common variant is heme c, which is formed by a post-translational modification in which heme is covalently linked to two Cys residues on the polypeptide via thioether bonds. In this Account, the influence of this covalent attachment on heme c properties and function is discussed, and examples of how covalent attachment has been used in selected applications are presented. Proteins that bind heme c are among the most well-characterized proteins in biochemistry. Most of these proteins are cytochromes c (cyts c) that serve as electron carriers in photosynthesis and respiration. Despite the intense study of cyts c, the functional significance of heme covalent attachment has remained elusive. One observation is that heme c reaches a lower reduction potential in nature than its noncovalently linked counterpart, heme b, when comparing proteins with the same axial ligands. Furthermore, covalent attachment is known to enhance protein stability and allow the heme to be relatively solvent exposed. However, an inorganic chemistry perspective on the effects of covalent attachment has been lacking. Spectroscopic measurements and computations on cyts c and model systems reveal a number of effects of covalent attachment on heme electronic structure and reactivity. One is that the predominant nonplanar ruffling distortion seen in heme c lowers heme reduction potential. Another is that covalent attachment influences the interaction of the heme iron with the proximal His ligand. Heme ruffling also has been shown to influence electronic coupling to redox partners and, therefore, electron transfer rates by altering the distribution of the orbital hole on the porphyrin in oxidized cyt c. Another consequence of heme covalent attachment is the strong vibrational coupling seen between the iron and the protein surface as revealed by nuclear resonance vibrational spectroscopy studies. Finally, heme covalent attachment is proposed to be an important feature supporting multiple roles of cyt c in programmed cell death (apoptosis). Heme covalent attachment is not only vital for the biological functions of cyt c but also provides a useful handle in a number of applications. For one, the engineering of heme c onto an exposed portion of a protein of interest has been shown to provide a visible affinity purification tag. In addition, peptides with covalently attached heme, known as microperoxidases, have been studied as model compounds and oxidation catalysts and, more recently, in applications for energy conversion and storage. The wealth of insight gained about heme c through fundamental studies of cyts c forms a basis for future efforts toward engineering natural and artificial cytochromes for a variety of applications.


Assuntos
Heme/análogos & derivados , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Heme/química , Heme/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular
3.
Biochemistry ; 54(4): 1064-76, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25531247

RESUMO

Cytochrome c (Cyt c) has a heme covalently bound to the polypeptide via a Cys-X-X-Cys-His (CXXCH) linker that is located in the interface region for protein-protein interactions. To determine whether the polypeptide matrix influences iron vibrational dynamics, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on (57)Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c-552, and variants M13V, M13V/K22M, and A7F, which have structural modifications that alter the composition or environment of the CXXCH pentapeptide loop. Simulations of the NRVS data indicate that the 150-325 cm(-1) region is dominated by NHis-Fe-SMet axial ligand and polypeptide motions, while the 325-400 cm(-1) region shows dominant contributions from ν(Fe-NPyr) (Pyr = pyrrole) and other heme-based modes. Diagnostic spectral signatures that directly relate to structural features of the heme active site are identified using a quantum chemistry-centered normal coordinate analysis (QCC-NCA). In particular, spectral features that directly correlate with CXXCH loop stiffness, the strength of the Fe-His interaction, and the degree of heme distortion are identified. Cumulative results from our investigation suggest that compared to the wild type (wt), variants M13V and M13V/K22M have a more rigid CXXCH pentapeptide segment, a stronger Fe-NHis interaction, and a more ruffled heme. Conversely, the A7F variant has a more planar heme and a weaker Fe-NHis bond. These results are correlated to the observed changes in reduction potential between wt protein and the variants studied here. Implications of these results for Cyt c biogenesis and electron transfer are also discussed.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Vibração , Sítios de Ligação/fisiologia , Estrutura Secundária de Proteína
4.
Proc Natl Acad Sci U S A ; 111(18): 6570-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753591

RESUMO

Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50-60 cm(-1). This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Heme/química , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Grupo dos Citocromos c/genética , Transporte de Elétrons , Cavalos , Cinética , Modelos Moleculares , Mutação , Oxirredução , Processos Fotoquímicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Análise Espectral Raman , Vibração
5.
J Am Chem Soc ; 136(1): 4-7, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24351231

RESUMO

A molecular electrocatalyst is reported that reduces protons to hydrogen (H2) in neutral water under aerobic conditions. The biomolecular catalyst is made from cobalt substitution of microperoxidase-11, a water-soluble heme-undecapeptide derived from the protein horse cytochrome c. In aqueous solution at pH 7.0, the catalyst operates with near quantitative Faradaic efficiency, a turnover frequency ~6.7 s(-1) measured over 10 min at an overpotential of 852 mV, and a turnover number of 2.5 × 10(4). Catalyst activity has low sensitivity to oxygen. The results show promise as a hydrogenase functional mimic derived from a biomolecule.


Assuntos
Cobalto/química , Hidrogênio/química , Peroxidases/metabolismo , Água/química , Aerobiose , Catálise , Hidrogênio/metabolismo , Estrutura Molecular
6.
Inorg Chem ; 52(22): 12933-46, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24187968

RESUMO

The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa , NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on the electronic structure. Through the use of mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S = ½) ferric proteins has confirmed and refined the developing understanding of how ruffling influences the spin distribution on heme. The chemical shifts of the core heme carbons were obtained through site-specific labeling of the heme via biosynthetic incorporation of (13)C-labeled 5-aminolevulinic acid derivatives. Analysis of the contact shifts of these core heme carbons allowed Fermi contact spin densities to be estimated and changes upon ruffling to be evaluated. The results allow a deconvolution of the contributions to heme hyperfine shifts and a test of the influence of heme ruffling on the electronic structure and hyperfine shifts. The data indicate that as heme ruffling increases, the spin densities on the ß-pyrrole carbons decrease while the spin densities on the α-pyrrole carbons and meso carbons increase. Furthermore, increased ruffling is associated with stronger bonding to the heme axial His ligand.


Assuntos
Bactérias/enzimologia , Citocromos c/química , Heme/química , Ressonância Magnética Nuclear Biomolecular , Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimologia
7.
Proc Natl Acad Sci U S A ; 109(23): 8896-900, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22619327

RESUMO

The active site of cytochrome c (Cyt c) consists of a heme covalently linked to a pentapeptide segment (Cys-X-X-Cys-His), which provides a link between the heme and the protein surface, where the redox partners of Cyt c bind. To elucidate the vibrational properties of heme c, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on (57)Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c(552), including (13)C(8)-heme-, (13)C(5)(15)N-Met-, and (13)C(15)N-polypeptide (pp)-labeled samples, revealing heme-based vibrational modes in the 200- to 450-cm(-1) spectral region. Simulations of the NRVS spectra of H. thermophilus cytochrome c(552) allowed for a complete assignment of the Fe vibrational spectrum of the protein-bound heme, as well as the quantitative determination of the amount of mixing between local heme vibrations and pp modes from the Cys-X-X-Cys-His motif. These results provide the basis to propose that heme-pp vibrational dynamic couplings play a role in electron transfer (ET) by coupling vibrations of the heme directly to vibrations of the pp at the protein-protein interface. This could allow for the direct transduction of the thermal (vibrational) energy from the protein surface to the heme that is released on protein/protein complex formation, or it could modulate the heme vibrations in the protein/protein complex to minimize reorganization energy. Both mechanisms lower energy barriers for ET. Notably, the conformation of the distal Met side chain is fine-tuned in the protein to localize heme-pp mixed vibrations within the 250- to 400-cm(-1) spectral region. These findings point to a particular orientation of the distal Met that maximizes ET.


Assuntos
Bactérias/genética , Citocromos c/metabolismo , Heme/metabolismo , Ferro/metabolismo , Modelos Moleculares , Vibração , Domínio Catalítico/genética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular
8.
Metallomics ; 3(4): 396-403, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21380436

RESUMO

Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.


Assuntos
Bactérias/enzimologia , Citocromos c/metabolismo , Cavalos/metabolismo , Liases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bactérias/genética , Citocromos c/genética , Escherichia coli/genética , Expressão Gênica , Humanos , Liases/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...