RESUMO
Targeted drug delivery for primary brain tumors, particularly gliomas, is currently a promising approach to reduce patient relapse rates. The use of substitutable scaffolds, which enable the sustained release of clinically relevant doses of anticancer medications, offers the potential to decrease the toxic burden on the patient's organism while also enhancing their quality of life and overall survival. Upconversion nanoparticles (UCNPs) are being actively explored as promising agents for detection and monitoring of tumor growth, and as therapeutic agents that can provide isolated therapeutic effects and enhance standard chemotherapy. Our study is focused on the feasibility of constructing scaffolds using methacrylated hyaluronic acid with additional impregnation of UCNPs and the chemotherapeutic drug temozolomide (TMZ) for glioma treatment. The designed scaffolds have been demonstrated their efficacy as a drug and UCNPs delivery system for gliomas. Using the aggressive orthotopic glioma model in vivo, it was found that the scaffolds possess the capacity to ameliorate neurological disorders in mice. Moreover, upon intracranial co-implantation of the scaffolds and glioma cells, the constructs disintegrate into distinct segments, augmenting the release of UCNPs into the surrounding tissue and concurrently reducing postoperative damage to brain tissue. The use of TMZ in the scaffold composition contributed to restraining glioma development and the reduction of tumor invasiveness. Our findings unveil promising prospects for the application of photopolymerizable biocompatible scaffolds in the realm of neuro-oncology.
RESUMO
BACKGROUND: Burnout and lagging academic productivity are pressing challenges in hospital medicine, leading to stagnation and attrition. Mentoring shapes professional identity formation and enhances faculty vitality and retention, but has not been optimized among academic hospitalists. OBJECTIVES: We sought to explore how mentoring impacts academic hospitalist professional identity and to elucidate barriers to mentoring in the field. METHODS: We conducted focus groups at three academic medical centers. Informed by social-constructivist theory of identity development, we coded deidentified data and performed thematic analysis. RESULTS: Thirty-one academic hospitalists participated with 1 to >20 years experience. Mentoring shaped professional identity formation in six core domains: choosing academic hospital medicine, identifying and focusing on an area of interest, progressing career, navigating work-life integration, staying in academic medicine, and becoming a mentor. Distinct models included dyadic mentoring, peer mentoring, organic mentoring, and mentoring teams, each with benefits and limitations. We identified nine key mentoring actions that influenced hospitalist professional identity formation and career development. Mentoring barriers included lack of time, awareness, and access to experienced mentors, as well as poor quality mentoring and mentor-mentee malalignment. Aspects of hospitalists' professional identity also posed barriers, including ambivalence around academic identity. CONCLUSIONS: Mentoring fosters academic thriving and retention in academic hospitalists. Access to effective mentoring remains lacking due to few senior mentors in the relatively new field of hospital medicine and reticence in academic identity, among other factors. Mentoring training, impact on underrepresented minority hospitalists, and integration into institutional culture should be considered for enhancing the career development of academic hospitalists.
RESUMO
INTRODUCTION: Individual risk assessment of assisted reproductive technologies is essential for personalized treatment strategies. Genetic and genomic indicators of the response to stress by cells could provide individual prognostic indicators for in vitro fertilization (IVF) success. Such indicators include the copy number of ribosomal genes (rDNA), which modulates the level of protein synthesis, and the abundance of mitochondrial DNA (mtDNA), which provides the cell with energy, while the content of telomere repeats (TRs) indicate the biological age. MATERIALS AND METHODS: The contents of the three repeats in DNA isolated from blood leukocytes of 40 women before and after ovarian stimulation were assayed prior to IVF. Then, we divided the women into a successful IVF group, IVF+ (N = 17, 7 cases of twins), and a group of failed cases, IVF- (N = 23). The control group included 17 non-pregnant women with natural childbirth in the past. The nonradioactive quantitative hybridization (NQH) method was applied to assay the genome repeat contents. RESULTS: The number of rDNA copies in the IVF+ group was significantly higher than in the IVF- group (p < 10-8). The number of mtDNA copies in the IVF+ group also exceeded those in the IVF- group (p < 0.001), whereas the TR content in the two groups differed, albeit, non-significantly (p < 0.03). Following the ovarian stimulation, the rDNA copy numbers did not change, while the contents of the mtDNA and TR varied significantly. CONCLUSIONS: This pilot study has shown that rDNA abundance in blood leukocytes can be considered a stable and effective predictor. Very low numbers of ribosomal repeat copies (<330) entail a high risk of IVF failure. However, a combination of numerous mtDNA and TRs, provided that rDNA content is not very low, increases the probability of multiple pregnancies.
Assuntos
Variações do Número de Cópias de DNA , Fertilização in vitro , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA/genética , Projetos Piloto , DNA Mitocondrial/genética , DNA Ribossômico , Telômero , Indução da Ovulação/métodosRESUMO
Sleep-wake cycle disorders most often accompany the elderly and are frequently associated with the development of neurodegenerative processes, primarily Alzheimer's disease. Sleep disturbances can be diagnosed in patients with AD even before the onset of memory and cognitive impairment, and become more pronounced as the disease progresses. Therefore, the expansion of our knowledge of how sleep relates to AD pathogenesis needs to be addressed as soon as possible. Here, we investigated the influence of chronic sleep deprivation on the motor and orienting-exploratory activity of 5xFAD mice, as well as their spatial learning ability and long-term memory retention. The studies carried out revealed that chronic sleep deprivation negatively affects the processes of spatial memory reconsolidation in 5xFAD mice. This leads to the development of stress-related behavioral responses, including aggressive behavior. In addition, the morphological changes in the cerebral cortex, including changes in the nuclear-cytoplasmic ratio and degradation of neuronal processes are observed. Moreover, we found an increase in the level of total DNA methylation in the blood of the sleep-deprived mice, which may be one of the mechanisms of the two-way relationship between sleep and neurodegeneration.
RESUMO
Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.
RESUMO
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
RESUMO
Glioma is the most common brain tumor, for which no significant improvement in life expectancy and quality of life is yet possible. The creation of stable fluorescent glioma cell lines is a promising tool for in-depth studies of the molecular mechanisms of glioma initialization and pathogenesis, as well as for the development of new anti-cancer strategies. Herein, a new fluorescent glioma GL261-kat cell line stably expressing a far-red fluorescent protein (TurboFP635; Katushka) was generated and characterized, and then validated in a mouse orthotopic glioma model. By using epi-fluorescence imaging, we detect the fluorescent glioma GL261-kat cells in mice starting from day 14 after the inoculation of glioma cells, and the fluorescence signal intensity increases as the glioma progresses. Tumor growth is confirmed by magnetic resonance imaging and histology. A gradual development of neurological deficit and behavioral alterations in mice is observed during glioma progression. In conclusion, our results demonstrate the significance and feasibility of using the novel glioma GL261-kat cell line as a model of glioma biology, which can be used to study the initialization of glioma and monitor its growth by lifetime non-invasive tracking of glioma cells, with the prospect of monitoring the response to anti-cancer therapy.
RESUMO
An important step in the proteomic analysis of missing proteins is the use of a wide range of tissues, optimal extraction, and the processing of protein material in order to ensure the highest sensitivity in downstream protein detection. This work describes a purification protocol for identifying low-abundance proteins in human chorionic villi using the proposed "1DE-gel concentration" method. This involves the removal of SDS in a short electrophoresis run in a stacking gel without protein separation. Following the in-gel digestion of the obtained holistic single protein band, we used the peptide mixture for further LC-MS/MS analysis. Statistically significant results were derived from six datasets, containing three treatments, each from two tissue sources (elective or missed abortions). The 1DE-gel concentration increased the coverage of the chorionic villus proteome. Our approach allowed the identification of 15 low-abundance proteins, of which some had not been previously detected via the mass spectrometry of trophoblasts. In the post hoc data analysis, we found a dubious or uncertain protein (PSG7) encoded on human chromosome 19 according to neXtProt. A proteomic sample preparation workflow with the 1DE-gel concentration can be used as a prospective tool for uncovering the low-abundance part of the human proteome.
RESUMO
The level of apoptosis is increased during pregnancy. Dying cells emit DNA that remains in blood circulation and is known as cell-free DNA (cfDNA). The concentration of cfDNA can reflect the level of cell death. The present article is the result of studying cfDNA concentration and DNase I activity in the blood plasma of 40 non-pregnant women (control), 40 healthy pregnant women (over 37 weeks) and 40 pregnant women with a diagnosis of intrauterine growth restriction (IUGR). In order to explain the obtained results, a program modeling the change of cfDNA concentration under the influence of different internal and external factors was written. It was reported that, despite the fact that the level of cell death is increased, cfDNA concentration in blood can be decreased due to activation of cfDNA elimination system. A significant increase of DNase I activity has been reported in cases of IUGR. Increase in DNase I activity over a certain threshold indicates presence of pathological processes in the organism. CfDNA circulating in blood cannot be a reliable marker of increased cell death during pregnancy. Thus, assessment of the level of cell death during pregnancy should be done by simultaneous analysis of cfDNA level and DNase I activity.