Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38782287

RESUMO

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Assuntos
Mudança Climática , Secas , Fagus , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Florestas , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
3.
Sci Data ; 7(1): 1, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896794

RESUMO

The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.


Assuntos
Árvores/crescimento & desenvolvimento , Madeira , Betula , Mudança Climática , Europa (Continente) , Fagus , Florestas , Picea , Pinus , Populus , Quercus
4.
New Phytol ; 210(2): 443-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26720626

RESUMO

Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance.


Assuntos
Adaptação Fisiológica , Mudança Climática , Fagus/fisiologia , Chuva , Europa (Continente) , Fagus/anatomia & histologia , Fagus/crescimento & desenvolvimento , Modelos Lineares , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Pressão , Análise de Componente Principal , Madeira/análise , Madeira/fisiologia , Xilema/fisiologia
5.
Tree Physiol ; 35(9): 949-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209617

RESUMO

Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech (Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816-544 mm year(-1)), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ∼30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity ϵ reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root growth in particular, did respond to reduced water availability with higher phenotypic plasticity than did physiology. We conclude that beech provenances exposed to different precipitation regimes have developed some genotypic differences with respect to leaf water status regulation, but these adaptations are associated with only minor adaptation in plant morphology and they do not affect the growth rate of the saplings.


Assuntos
Adaptação Fisiológica , Secas , Fagus/fisiologia , Chuva , Módulo de Elasticidade , Osmose , Brotos de Planta/fisiologia , Estômatos de Plantas/fisiologia , Característica Quantitativa Herdável , Estações do Ano
6.
Tree Physiol ; 34(12): 1348-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25430883

RESUMO

Rapidly decreasing water availability as a consequence of climate change is likely to endanger the range of long-lived tree species. A pressing question is, therefore, whether adaptation to drought exists in important temperate tree species like European beech (Fagus sylvatica L.), a wide-spread, dominant forest tree in Central Europe. Here, five beech stands were selected along a precipitation gradient from moist to dry conditions. Neutral genetic markers revealed strong variation within and little differentiation between the populations. Natural regeneration from these stands was transferred to a common garden and used to investigate the expression of genes for abscisic acid (ABA)-related drought signaling [9-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection [ascorbate peroxidase (APX), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDH), glutamine amidotransferase (GAT)] that are involved in drought acclimation. We hypothesized that progenies from dry sites exhibit constitutively higher expression levels of ABA- and stress-related genes and are less drought responsive than progenies from moist sites. Transcript levels and stress responses (leaf area loss, membrane integrity) of well-irrigated and drought-stressed plants were measured during the early, mid- and late growing season. Principal component (PC) analysis ordered the beech progenies according to the mean annual precipitation at tree origin by the transcript levels of SOD, ALDH, GAT and ERD as major loadings along PC1. PC2 separated moist and drought treatments with PP2C levels as important loading. These results suggest that phosphatase-mediated signaling is flexibly acclimated to the current requirements, whereas stress compensatory measures exhibited genotypic variation, apparently underlying climate selection. In contrast to expectation, the drought responses were less pronounced than the progeny-related differences and the transcript levels were constitutively lower in beeches from dry than from moist sites. These results imply that beeches from dry origins may have evolved mechanisms to avoid oxidative stress.


Assuntos
Aclimatação/genética , Clima , Secas , Fagus/genética , Variação Genética , Estresse Fisiológico/genética , Água , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Mudança Climática , Fagus/metabolismo , Genes de Plantas , Genótipo , Estresse Oxidativo/genética , Chuva , Transdução de Sinais , Transcrição Gênica , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...