Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(5): 050402, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126902

RESUMO

We present measurements of a topological property, the Chern number (C_{1}), of a closed manifold in the space of two-level system Hamiltonians, where the two-level system is formed from a superconducting qubit. We manipulate the parameters of the Hamiltonian of the superconducting qubit along paths in the manifold and extract C_{1} from the nonadiabatic response of the qubit. By adjusting the manifold such that a degeneracy in the Hamiltonian passes from inside to outside the manifold, we observe a topological transition C_{1}=1→0. Our measurement of C_{1} is quantized to within 2% on either side of the transition.

2.
J Chem Phys ; 138(2): 024110, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320671

RESUMO

The sign problem in full configuration interaction quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper, we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...