RESUMO
Electronic nematicity has been found in a wide range of strongly correlated electron materials, resulting in the electronic states having-4.5pc]Please note that the spelling of the following author name(s) in the manuscript differs from the spelling provided in the article metadata: Izidor Benedicic. The spelling provided in the manuscript has been retained; please confirm. a symmetry that is lower than that of the crystal that hosts them. One of the most astonishing examples is [Formula: see text], in which a small in-plane component of a magnetic field induces significant resistivity anisotropy. The direction of this anisotropy follows the direction of the in-plane field. The microscopic origin of this field-induced nematicity has been a long-standing puzzle, with recent experiments suggesting a field-induced spin density wave driving the anisotropy. Here, we report spectroscopic imaging of a field-controlled anisotropy of the electronic structure at the surface of [Formula: see text]. We track the electronic structure as a function of the direction of the field, revealing a continuous change with the angle. This continuous evolution suggests a mechanism based on spin-orbit coupling resulting in compass-like control of the electronic bands. The anisotropy of the electronic structure persists to temperatures about an order of magnitude higher compared to the bulk, demonstrating novel routes to stabilize such phases over a wider temperature range.
RESUMO
Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step toward controlling material's properties. Since the proposal of charge order-induced MIT in magnetite Fe3O4 in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive. Recently, a trimeron order was found in the low-temperature structure of Fe3O4; however, the expected transition entropy change in forming trimeron is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here, we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature structure of bulk Fe3O4 and that, upon cooling, a competitive intertwining of charge and lattice orders arouses the Verwey transition. Our findings discover an unconventional type of electronic nematicity in correlated materials and offer innovative insights into the transition mechanism in Fe3O4 via the electron-phonon coupling.
Assuntos
Elétrons , Fônons , Temperatura Baixa , Eletrônica , EntropiaRESUMO
Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIIIâNiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.
RESUMO
The phenomenology and radical changes seen in material properties traversing a quantum phase transition have captivated condensed matter research over the past decades. Strong electronic correlations lead to exotic electronic ground states, including magnetic order, nematicity, and unconventional superconductivity. Providing a microscopic model for these requires detailed knowledge of the electronic structure in the vicinity of the Fermi energy, promising a complete understanding of the physics of the quantum critical point. Here, we demonstrate such a measurement at the surface of Sr3Ru2O7. Our results show that, even in zero field, the electronic structure is strongly C2 symmetric and that a magnetic field drives a Lifshitz transition and induces a charge-stripe order. We track the changes of the electronic structure as a function of field via quasiparticle interference imaging at ultralow temperatures. Our results provide a complete microscopic picture of the field-induced changes of the electronic structure across the Lifshitz transition.
RESUMO
Ion leaching from pure-phase oxygen-evolving electrocatalysts generally exists, leading to the collapse and loss of catalyst crystalline matrix. Here, different from previous design methodologies of pure-phase perovskites, we introduce soluble BaCl2 and SrCl2 into perovskites through a self-assembly process aimed at simultaneously tuning dual cation/anion leaching effects and optimizing ion match in perovskites to protect the crystalline matrix. As a proof-of-concept, self-assembled hybrid Ba0.35Sr0.65Co0.8Fe0.2O3-δ (BSCF) nanocomposite (with BaCl2 and SrCl2) exhibits the low overpotential of 260 mV at 10 mA cm-2 in 0.1 M KOH. Multiple operando spectroscopic techniques reveal that the pre-leaching of soluble compounds lowers the difference of interfacial ion concentrations and thus endows the host phase in hybrid BSCF with abundant time and space to form stable edge/face-sharing surface structures. These self-optimized crystalline structures show stable lattice oxygen active sites and short reaction pathways between Co-Co/Fe metal active sites to trigger favorable adsorption of OH- species.
RESUMO
Developing efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) is of paramount importance to many chemical and energy transformation technologies. The diversity and flexibility of metal oxides offer numerous degrees of freedom for enhancing catalytic activity by tailoring their physicochemical properties, but the active site of current metal oxides for OER is still limited to either metal ions or lattice oxygen. Here, a new complex oxide with unique hexagonal structure consisting of one honeycomb-like network, Ba4 Sr4 (Co0.8 Fe0.2 )4 O15 (hex-BSCF), is reported, demonstrating ultrahigh OER activity because both the tetrahedral Co ions and the octahedral oxygen ions on the surface are active, as confirmed by combined X-ray absorption spectroscopy analysis and theoretical calculations. The bulk hex-BSCF material synthesized by the facile and scalable sol-gel method achieves 10 mA cm-2 at a low overpotential of only 340 mV (and small Tafel slope of 47 mV dec-1 ) in 0.1 m KOH, surpassing most metal oxides ever reported for OER, while maintaining excellent durability. This study opens up a new avenue to dramatically enhancing catalytic activity of metal oxides for other applications through rational design of structures with multiple active sites.
RESUMO
The one-dimensional cobaltate Ca[Formula: see text]Co[Formula: see text]O[Formula: see text] is an intriguing material having an unconventional magnetic structure, displaying quantum tunneling phenomena in its magnetization. Using a newly developed experimental method, [Formula: see text]-core-level non-resonant inelastic x-ray scattering ([Formula: see text]-NIXS), we were able to image the atomic Co [Formula: see text] orbital that is responsible for the Ising magnetism in this system. We can directly observe that corrections to the commonly accepted ideal prismatic trigonal crystal field scheme occur in Ca[Formula: see text]Co[Formula: see text]O[Formula: see text], and it is the complex [Formula: see text] orbital occupied by the sixth electron at the high-spin Co[Formula: see text] ([Formula: see text]) sites that generates the Ising-like behavior. The ability to directly relate the orbital occupation with the local crystal structure is essential to model the magnetic properties of this system.
RESUMO
Topological materials ranging from topological insulators to Weyl and Dirac semimetals form one of the most exciting current fields in condensed-matter research. Many half-Heusler compounds, RPtBi (R = rare earth), have been theoretically predicted to be topological semimetals. Among various topological attributes envisaged in RPtBi, topological surface states, chiral anomaly, and planar Hall effect have been observed experimentally. Here, we report an unusual intrinsic anomalous Hall effect (AHE) in the antiferromagnetic Heusler Weyl semimetal compounds GdPtBi and NdPtBi that is observed over a wide temperature range. In particular, GdPtBi exhibits an anomalous Hall conductivity of up to 60 Ω-1â cm-1 and an anomalous Hall angle as large as 23%. Muon spin-resonance (µSR) studies of GdPtBi indicate a sharp antiferromagnetic transition (TN) at 9 K without any noticeable magnetic correlations above TN Our studies indicate that Weyl points in these half-Heuslers are induced by a magnetic field via exchange splitting of the electronic bands at or near the Fermi energy, which is the source of the chiral anomaly and the AHE.
RESUMO
Quasi two-dimensional (2D) oxide-based honeycomb lattices have attracted great attention for displaying specific electronic instabilities, which give rise to unconventional bonding patterns and unexpected magnetic exchange couplings. The synthesis of AgRuO3 , another representative exhibiting unique structural properties, is reported here. The stacking sequence of the honeycomb layers (Ru2 O6 ) differs from analogous precedents; in particular, the intercalating silver atoms are shifted from the middle of the interspaces and cap the void octahedral sites of the (â¡Ru2 O6 ) slabs from both sides. This way, charge neutral, giant 2D "molecules" of Ag/Ru2 O6 /Ag result; a feature that significantly enhances the overall 2D character of AgRuO3 . Measurements of magnetization have revealed extremely strong magnetic exchange coupling to be present, surviving to a temperature as high as 673â K, which is the temperature of thermal decomposition. No indication for long-range magnetic order has, however, been observed. Theoretical analyses confirm the pronounced 2D character of the electronic system, and in particular reveal the inter-honeycomb layer coupling Jc to be distinctly weak.
RESUMO
Magnetoelectric multiferroics have attracted enormous attention in the past years because of their high potential for applications in electronic devices, which arises from the intrinsic coupling between magnetic and ferroelectric ordering parameters. The initial finding in TbMnO3 has triggered the search for other multiferroics with higher ordering temperatures and strong magnetoelectric coupling for applications. To date, spin-driven multiferroicity is found mainly in oxides, as well as in a few halogenides. We report multiferroic properties for synthetic melanothallite Cu2OCl2, which is the first discovery of multiferroicity in a transition metal oxyhalide. Measurements of pyrocurrent and the dielectric constant in Cu2OCl2 reveal ferroelectricity below the Néel temperature of ~70 K. Thus, melanothallite belongs to a new class of multiferroic materials with an exceptionally high critical temperature. Powder neutron diffraction measurements reveal an incommensurate magnetic structure below T N, and all magnetic reflections can be indexed with a propagation vector [0.827(7), 0, 0], thus discarding the claimed pyrochlore-like "all-in-all-out" spin structure for Cu2OCl2, and indicating that this transition metal oxyhalide is, indeed, a spin-induced multiferroic material.
Assuntos
Compostos de Ferro/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Magnetismo , Modelos MolecularesRESUMO
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (h/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.
Assuntos
Germânio/química , Imãs/química , Manganês/química , Estrutura MolecularRESUMO
Open-shell solids exhibit a plethora of intriguing physical phenomena that arise from a complex interplay of charge, spin, orbital, and spin-state degrees of freedom. Comprehending these phenomena is an indispensable prerequisite for developing improved functional materials. This type of understanding can be achieved, on the one hand, by experimental and theoretical investigations into known systems, or by synthesizing new solids displaying unprecedented structural and/or electronic features. ß-Ag3 RuO4 may serve as such a model system because it possesses a remarkable anionic structure, consisting of tetrameric polyoxoanions (Ru4 O16 )(12-) , and is an embedded fragment of a 2D trigonal MO2 lattice. The notorious frustration of antiferromagnetic (AF) exchange couplings on such lattices is thus lifted, and instead strong AF occurs within the oligomeric anion, where only one exchange path remains frustrated among the relevant six. The strong magnetic anisotropy of the [Ru4 O16 ](12-) ion, and the effectively orbital nature of its net magnetic moment, implies that this anion may reveal the properties of a single-molecule magnet if well-diluted in a diamagnetic matrix.