Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 179: 106297, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156294

RESUMO

Based on phytosomes advantages over liposomes, hyaluronic acid (HA) with/out pegylated phospholipid was used to develop surface-modified genistein (Gen) phytosome as Gen pegylated hyaluophytosomes (G-PHA) and Gen hyaluophytosomes (G-HA) as novel delivery systems for breast cancer treatment. In this study, in-vitro characterization of G-HA and G-PHA shows PS 144.2 ±1.266 nm and 220.3 ±2.51 nm, ZP -30.9 ±0.75 and -32.06 ±0.305 respectively. Morphological elucidation shows HA covers the surface of G-HA and the presence of a transparent layer of PEG surrounding G-PHA. In-vitro release shows a significant slow Gen release from G-HA, and G-PHA compared to Gen solution and Gen phytosomes. In-vivo bioavailability data shows improvement in bioavailability for G-HA and G-PHA compared to Gen suspension (AUC0-t: 3.563 ± 0.067, 2.092 ± 0.058, 0.374 ± 0.085 µg/ml*h respectively). Therapeutic evaluation of the prepared targeted formulations was carried out by subcutaneous injection in an EAC-induced breast cancer model in mice. G-HA and G-PHA show a promising chemotherapeutic effect in terms of lowering the tumor size and tumor biomarkers (CEA: -34.6, -44.7 & CA15.3: -77.8, -81.6, respectively). This reduction in their values compared to Gen phytosomes, Gen suspension, and the control group is attributed to high Gen accumulation at the target organ owing to targeting properties of HA that are used in phytosomal surface modification in G-HA. Additionally, the presence of MPEG2000-DSPE in G-PHA tends to improve interstitium lymphatic drainage following SC administration, resulting in maximizing the therapeutic benefits of breast cancer despite the difference in pharmacokinetics behavior compared to G-HA. These formulations can be further studied for metastatic breast cancer.


Assuntos
Genisteína , Neoplasias , Camundongos , Animais , Genisteína/farmacologia , Genisteína/uso terapêutico , Lipossomos , Ácido Hialurônico , Disponibilidade Biológica , Polietilenoglicóis
2.
Int J Pharm ; 601: 120564, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812970

RESUMO

Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Genisteína , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Ratos , Solubilidade
3.
Acta Pharm ; 65(3): 285-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26431106

RESUMO

Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.


Assuntos
Curcumina/química , Géis/química , Disponibilidade Biológica , Química Farmacêutica/métodos , Portadores de Fármacos/química , Estabilidade de Medicamentos , Excipientes/química , Interações Hidrofóbicas e Hidrofílicas , Óleos/química , Tamanho da Partícula , Polietilenoglicóis/química , Solubilidade , Solventes/química , Tensoativos/química
4.
Int J Pharm ; 489(1-2): 117-23, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25936626

RESUMO

The aim of this study was to examine the efficacy of self-nano phospholipid dispersions (SNPDs) based on Phosal(®) to improve the oral bioavailability of curcumin (CUR). SNPDs were prepared with Phosal(®) 53 and Miglyol 812 at different surfactant ratio. Formulations were evaluated for particle size, polydispersity index, zeta potential, and robustness toward dilution, TEM as well as in vitro drug release. The in vivo oral absorption of selected formulations in comparison to drug suspension was evaluated in rats. Moreover, formulations were assessed for in vitro characteristic changes before and after storage. The SNPDs were miscible with water in any ratio and did not show any phase separation or drug precipitation. All the formulas were monodisperse with nano range size from 158±2.6 nm to 610±6.24 nm. They passed the pharmacopeial tolerance for CUR dissolution. No change in dissolution profile and physicochemical characteristics was detected after storage. CUR-SNPDs are found to be more bioavailable compared with suspension during an in vivo study in rats and in vitro release studies failed to imitate the in vivo conditions. These formulations might be new alternative carriers that enhance the oral bioavailability of poorly water-soluble molecules, such as CUR.


Assuntos
Curcumina/química , Fosfolipídeos/química , Animais , Disponibilidade Biológica , Curcumina/administração & dosagem , Curcumina/farmacocinética , Composição de Medicamentos , Glicerol/análogos & derivados , Glicerol/química , Polietilenoglicóis/química , Ratos Wistar , Tensoativos/química , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...