RESUMO
In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.
Assuntos
Pesquisadores , Humanos , Mobilidade Ocupacional , Pesquisa Biomédica/métodos , Escolha da ProfissãoRESUMO
The evolutionary origins of neurons remain unknown. Although recent genome data of extant early-branching animals have shown that neural genes existed in the common ancestor of animals, the physiological and genetic properties of neurons in the early evolutionary phase are still unclear. Here, we performed a mass spectrometry-based comprehensive survey of short peptides from early-branching lineages Cnidaria, Porifera and Ctenophora. We identified a number of mature ctenophore neuropeptides that are expressed in neurons associated with sensory, muscular and digestive systems. The ctenophore peptides are stored in vesicles in cell bodies and neurites, suggesting volume transmission similar to that of cnidarian and bilaterian peptidergic systems. A comparison of genetic characteristics revealed that the peptide-expressing cells of Cnidaria and Ctenophora express the vast majority of genes that have pivotal roles in maturation, secretion and degradation of neuropeptides in Bilateria. Functional analysis of neuropeptides and prediction of receptors with machine learning demonstrated peptide regulation of a wide range of target effector cells, including cells of muscular systems. The striking parallels between the peptidergic neuronal properties of Cnidaria and Bilateria and those of Ctenophora, the most basal neuron-bearing animals, suggest a common evolutionary origin of metazoan peptidergic nervous systems.
Assuntos
Cnidários , Ctenóforos , Animais , Ctenóforos/genética , Espectrometria de Massas , Neurônios/fisiologia , PeptídeosRESUMO
Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) are non-integrating chromosomal gene delivery vectors for molecular biology research. Recently, microcell-mediated chromosome transfer (MMCT) of HACs/MACs has been achieved in various human cells that include human immortalised mesenchymal stem cells (hiMSCs) and human induced pluripotent stem cells (hiPSCs). However, the conventional strategy of gene introduction with HACs/MACs requires laborious and time-consuming stepwise isolation of clones for gene loading into HACs/MACs in donor cell lines (CHO and A9) and then transferring the HAC/MAC into cells via MMCT. To overcome these limitations and accelerate chromosome vector-based functional assays in human cells, we established various human cell lines (HEK293, HT1080, hiMSCs, and hiPSCs) with HACs/MACs that harbour a gene-loading site via MMCT. Model genes, such as tdTomato, TagBFP2, and ELuc, were introduced into these preprepared HAC/MAC-introduced cell lines via the Cre-loxP system or simultaneous insertion of multiple gene-loading vectors. The model genes on the HACs/MACs were stably expressed and the HACs/MACs were stably maintained in the cell lines. Thus, our strategy using this HAC/MAC-containing cell line panel has dramatically simplified and accelerated gene introduction via HACs/MACs.
Assuntos
Cromossomos Artificiais Humanos , Técnicas de Transferência de Genes , Animais , Linhagem Celular , Vetores Genéticos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Camundongos , Biologia MolecularRESUMO
This report elaborates on adaptations of the eyes of the whale shark Rhincodon typus (Elasmobranchii, Rhincodontidae), including the discovery that they are covered with dermal denticles, which is a novel mechanism of eye protection in vertebrates. The eye denticle differs in morphology from that of the dermal denticles distributed over the rest of the body, consistent with a different function (abrasion resistance). We also demonstrate that the whale shark has a strong ability to retract the eyeball into the eye socket. The retraction distance was calculated to be approximately half the diameter of the eye, which is comparable to those of other vertebrates that are known to have highly retractable eyes. These highly protective features of the whale shark eye seem to emphasize the importance of vision for environmental perception, which contradicts the general, though poorly established, notion of low reliance on vision in this species.
Assuntos
Movimentos Oculares/fisiologia , Olho/anatomia & histologia , Olho/fisiopatologia , Tubarões/anatomia & histologia , Tubarões/fisiologia , AnimaisRESUMO
Three-dimensional live imaging has become an indispensable technique in the fields of cell, developmental and neural biology. Precise spatio-temporal manipulation of biological entities is often required for a deeper functional understanding of the underlying biological process. Here we present a home-built integrated framework and optical design that combines three-dimensional light-sheet imaging over time with precise spatio-temporal optical manipulations induced by short infrared laser pulses. We demonstrate their potential for sub-cellular ablation of neurons and nuclei, tissue cauterization and optogenetics by using the Drosophila melanogaster and zebrafish model systems.
Assuntos
Microscopia , Animais , Drosophila melanogaster/fisiologia , Imageamento Tridimensional/métodos , Raios Infravermelhos , Lasers , Peixe-Zebra/fisiologiaRESUMO
G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors that interact with the ß-arrestin family, particularly ß-arrestin 1 (ARRB1). GPCRs interact with 33% of small molecule drugs. Ligand screening is promising for drug discovery concerning GPCR-related diseases. Luciferase complementation assay (LCA) enables detection of protein-protein complementation via bioluminescence following complementation of N- and C-terminal luciferase fragments (NEluc and CEluc) fused to target proteins, but it is necessary to co-express the two genes. Here, we developed LCAs with mouse artificial chromosomes (MACs) that have unique characteristics such as stable maintenance and a substantial insert-carrying capacity. First, an NEluc-ARRB1 was inserted into MAC4 by Cre-loxP recombination in CHO cells, named ARRB1-MAC4. Second, a parathyroid hormone receptor 2 (PTHR2)-CEluc or prostaglandin EP4 receptor (hEP4)-CEluc were inserted into ARRB1-MAC4, named ARRB1-PTHR2-MAC4 and ARRB1-hEP4-MAC4, respectively, via the sequential integration of multiple vectors (SIM) system. Each MAC was transferred into HEK293 cells by microcell-mediated chromosome transfer (MMCT). LCAs using the established HEK293 cell lines resulted in 35,000 photon counts upon somatostatin stimulation for ARRB1-MAC4 with transient transfection of the somatostatin receptor 2 (SSTR2) expression vector, 1800 photon counts upon parathyroid hormone stimulation for ARRB1-PTHR2-MAC4, and 35,000 photon counts upon prostaglandin E2 stimulation for ARRB1-hEP4-MAC4. These MACs were maintained independently from host chromosomes in CHO and HEK293 cells. HEK293 cells containing ARRB1-PTHR2-MAC4 showed a stable reaction for long-term. Thus, the combination of gene loading by the SIM system into a MAC and an LCA targeting GPCRs provides a novel and useful platform to discover drugs for GPCR-related diseases.
RESUMO
Summary: Ca2+ is a central second messenger in eukaryotic cells that regulates many cellular processes. Recently, we have indicated that typical Ca2+ signals are not purely oscillatory as widely assumed, but exhibit stochastic spiking with cell type and pathway specific characteristics. Here, we present the Calcium Signaling Analyzer (CaSiAn), an open source software tool that allows for quantifying these signal characteristics including individual spike properties and time course statistics in a semi-automated manner. CaSiAn provides an intuitive graphical user interface allowing experimentalists to easily process a large amount of Ca2+ signals, interactively tune peak detection, revise statistical measures and access the quantified signal properties as excel or text files. Availability and implementation: CaSiAn is implemented in Java and available on Github (https://github.com/mmahsa/CaSiAn) as well as on the project page (http://r3lab.uni.lu/web/casa). Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Sinalização do Cálcio , Software , HumanosRESUMO
Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5' end, a 1 kb artificial telomere at the 3' end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Cromossomos Humanos/genética , Engenharia Genética , Mutagênese Insercional/genética , Transgenes , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Marcação de Genes , Vetores Genéticos/metabolismo , Humanos , Melanoma Experimental/patologia , Camundongos , Plasmídeos/genética , TelômeroRESUMO
Proper chromosome segregation in mitosis relies on correct kinetochore interaction with spindle microtubules. In early mitosis, each kinetochore usually interacts with the lateral side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here, we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form a sustained attachment to the microtubule end in budding yeast (Saccharomyces cerevisiae). This leads to detachment of the other kinetochore from the microtubule end (or a location in its proximity). Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore-sliding mechanism to mitigate problems associated with multiple kinetochores on one microtubule in early mitosis.
Assuntos
Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , HumanosRESUMO
The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells.
RESUMO
Although most cell lines undergo mitotic arrest after prolonged exposure to microtubule inhibitors, some cells subsequently exit this state and become tetraploid. Among these cells, limited numbers of rodent cells are known to undergo multinucleation to generate multiple small independent nuclei, or micronuclei by prolonged colcemid treatment. Micronuclei are thought to be formed when cells shift to a pseudo G1 phase, during which the onset of chromosomal decondensation allows individual chromosomes distributed throughout the cell to serve as sites for the reassembly of nuclear membranes. To better define this process, we used long-term live cell imaging to observe micronucleation induced in mouse A9 cells by treating with the microtubule inhibitor colcemid. Our observations confirm that nuclear envelope formation occurs when mitotic-arrested cells shift to a pseudo G1 phase and adopt a tetraploid state, accompanied by chromosome decondensation. Unexpectedly, only a small number of cells containing large micronuclei were formed. We found that tetraploid micronucleated cells proceeded through an additional cell cycle, shifting to a pseudo G1 phase and forming octoploid micronucleated cells that were smaller and more numerous compared with the tetraploid micronucleated cells. Our data suggest that micronucleation occur when cells shift from mitotic arrest to a pseudo G1 phase, and demonstrate that, rather than being a single event, micronucleation is an inducible recurrent process that leads to the formation of progressively smaller and more numerous micronuclei.
Assuntos
Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Microtúbulos/efeitos dos fármacos , Animais , Células CHO , Cromossomos/efeitos dos fármacos , Cricetinae , Cricetulus , Demecolcina/farmacologia , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Imagem Molecular , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , PloidiasRESUMO
Proper chromosome segregation in mitosis relies on correct kinetochore-microtubule (KT-MT) interactions. The KT initially interacts with the lateral surface of a single MT (lateral attachment) extending from a spindle pole and is subsequently anchored at the plus end of the MT (end-on attachment). The conversion from lateral to end-on attachment is crucial because end-on attachment is more robust and thought to be necessary to sustain KT-MT attachment when tension is applied across sister KTs upon their biorientation. The mechanism for this conversion is still elusive. The Ndc80 complex is an essential component of the KT-MT interface, and here we studied a role of the Ndc80 loop region, a distinct motif looping out from the coiled-coil shaft of the complex, in Saccharomyces cerevisiae. With deletions or mutations of the loop region, the lateral KT-MT attachment occurred normally; however, subsequent conversion to end-on attachment was defective, leading to failure in sister KT biorientation. The Ndc80 loop region was required for Ndc80-Dam1 interaction and KT loading of the Dam1 complex, which in turn supported KT tethering to the dynamic MT plus end. The Ndc80 loop region, therefore, has an important role in the conversion from lateral to end-on attachment, a crucial maturation step of KT-MT interaction.
Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Cinetocoros/química , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Microtúbulos/química , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de SequênciaRESUMO
In early mitosis, microtubules can be generated at kinetochores as well as at spindle poles. However, the role and regulation of kinetochore-derived microtubules have been unclear. In general, metaphase spindle microtubules are oriented such that their plus ends bind to kinetochores. However, we now have evidence that, during early mitosis in budding yeast, microtubules are generated at kinetochores with distal plus ends. These kinetochore-derived microtubules interact along their length with microtubules that extend from a spindle pole, facilitating kinetochore loading onto the lateral surface of spindle pole microtubules. Once kinetochores are loaded, microtubules are no longer generated at kinetochores, and those that remain disappear rapidly and do not contribute to the metaphase spindle. Stu2 (the ortholog of vertebrate XMAP215/ch-TOG) localizes to kinetochores and plays a central role in regulating kinetochore-derived microtubules. Our work provides insight into microtubule generation at kinetochores and the mechanisms that facilitate initial kinetochore interaction with spindle pole microtubules.