Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38982331

RESUMO

In this paper, we describe our discovery of burnettiene A (1) as an anti-malarial compound from the culture broth of Lecanicillium primulinum (Current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated as an anti-fungal active compound from Aspergillus burnettii. However, the anti-fungal activity of 1 has been revealed in only one fungal species for and the mechanism of action of 1 remains unknown. After the validation of mitochondrial function inhibitory of 1, we envisioned a new anti-malarial drug discovery platform based on mitochondrial function inhibitory activity. We evaluated anti-malarial activity and 1 showed anti-malarial activity against Plasmodium falciparum FCR3 (chloroquine sensitive) and K1 strain (chloroquine resistant). Our study revealed the utility of our original screening system based on a multidrug-sensitive yeast and mitochondrial function inhibitory activity for the discovery of new anti-malarial drug candidates.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39025804

RESUMO

We envisioned that the rumen of Kitasato Yakumo beef cattle would contain unique microorganisms which produce bioactive compounds as their defense response to the external environment. The variety of microorganisms were collected from the feces of Kitasato Yakumo beef cattle. We evaluated the biological activity of the culture broth of the isolated strains, proving the utility of our approach.

3.
Biosci Biotechnol Biochem ; 88(7): 824-829, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38664007

RESUMO

We found that the culture broth of fungi showed anti-fungal activity against multidrug-sensitive budding yeast. However, we could not identify the anti-fungal compound due to the small quantity. Therefore, we attempted to increase the productivity of the target compound by the introduction of a global secondary metabolism regulator, laeA to the strain, which led to the successful isolation of 10-folds greater amount of MS-347a (1) than Aspergillus sp. FKI-5362. Compound 1 was not effective against Candida albicans and the detailed anti-fungal activity of 1 remains unverified. After our anti-fungal activity screening, 1 was found to inhibit the growth of broad plant pathogenic fungal species belonging to the Ascomycota. It is noteworthy that 1 showed little insecticidal activity against silkworms, suggesting its selective biological activity against plant pathogenic fungi. Our study implies that the combination strategy of multidrug-sensitive yeast and the introduction of laeA is useful for new anti-fungal drug discovery.


Assuntos
Descoberta de Drogas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Descoberta de Drogas/métodos , Candida albicans/efeitos dos fármacos , Metabolismo Secundário , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...