Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(18): eadn9731, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691594

RESUMO

Hydropower, although an attractive renewable energy source, can alter the flux of water, sediments, and biota, producing detrimental impacts in downstream regions. The Mekong River illustrates the impacts of large dams and the limitations of conventional dam regulating strategies. Even under the most optimistic sluicing scenario, sediment load at the Mekong Delta could only recover to 62.3 ± 8.2 million tonnes (1 million tonnes = 109 kilograms), short of the (100 to 160)-million tonne historical level. Furthermore, unless retrofit to reroute sediments, the dams are doomed to continue trapping sediment for at least 170 years and thus starve downstream reaches of sediment, contributing to the impending disappearance of the Mekong Delta. Therefore, we explicitly challenge the widespread use of large dead storages-the portion of the reservoirs that cannot be emptied-in dam designs. Smaller dead storages can ease sediment starvation in downstream regions, thereby buffering against sinking deltas or relative sea level rises.

2.
PLoS One ; 15(11): e0242356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33201898

RESUMO

Throughout the humid tropics, increased land disturbance and concomitant road construction increases erosion and sediment delivery to rivers. Building road networks in developing countries is commonly a priority for international development funding based on anticipated socio-economic benefits. Yet the resulting erosion from roads, which recent studies have shown result in at least ten-fold increases in erosion rates, is not fully accounted for. While effects of road-derived sediment on aquatic ecosystems have been documented in temperate climates, little has been published on the effects of road-induced sediment on aquatic ecosystems in developing countries of the tropics. We studied periphyton biomass and macroinvertebrate communities on the deltas of Río San Juan tributaries, comparing north-bank tributaries draining undisturbed rain forest with south-bank tributaries receiving runoff from a partially-built road experiencing rapid erosion. Periphyton biomass, richness and abundance of macroinvertebrates overall, and richness and abundance of Ephemeroptera, Plecoptera and Trichoptera were higher on the north-bank tributary deltas than the south-bank tributary deltas. These findings were consistent with prior studies in temperate climates showing detrimental effects of road-derived fine sediment on aquatic organisms. A Non-Metric Multidimensional Scaling (NMDS) analysis showed the impacted community on the south-bank deltas was influenced by poorly-sorted substrate with greater proportions of fine sediment and higher water temperatures.


Assuntos
Sedimentos Geológicos/química , Rios/química , Erosão do Solo/economia , Animais , Organismos Aquáticos , Biomassa , Indústria da Construção/tendências , Costa Rica , Ecossistema , Monitoramento Ambiental/métodos , Ephemeroptera , Sedimentos Geológicos/análise , Insetos , Nicarágua , Erosão do Solo/estatística & dados numéricos
3.
Sci Total Environ ; 706: 135743, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841838

RESUMO

Aquatic biological communities have directly undergone human-induced changes. Altered hydrological and morphological processes in running waters have caused the degradation of main habitats for biotas and have disturbed ecosystem functionality. The latest advances in river restoration concerned the rise in far-reaching hydromorphological restoration actions that have been implemented below dams to reverse well-known negative impacts of anthropogenic pressures. Some authors emphasized the enhancement of sediment supply and habitat diversity using gravel augmentation or bank erosion to restore morphodynamics, and thus improve biodiversity. We explored the Web of Science database for empirical research papers that specifically addressed such hydromorphological river restoration actions. Articles were examined using a text-content analysis tool to determine the major concepts or ideas they deal with. It has also been proved as useful in defining interrelationships and degree of interdisciplinary. Results showed that a low number of published scientific articles exist about such projects, mainly condensed in the North hemisphere. Divergent ecological issues were highlighted by the word co-occurrence networks: (i) gravel augmentation was used to improve spawning habitats for fish of economic interest whereas (ii) erodible corridor was designed to safeguard natural riparian systems, approaching morphological goals of channel widening. Overall, ecological responses were consistent with those expected, leading however rather to functional shifts than richness increase. Gravel augmentation or bank erosion were not usually combined with in-channel structure management. However, this might be an option to consider since the biological communities seem to be sensitive during first restorations with such combination. This review demonstrates the value of word co-occurrence networks in exploring a high number of previous publications, keys for formulating guidance to manage gravel augmentation or bank erosion along ecological purposes.

5.
Sci Total Environ ; 625: 114-134, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288998

RESUMO

Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development.

6.
Environ Manage ; 53(1): 76-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23716006

RESUMO

Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Desastres , Sedimentos Geológicos , Atividades Humanas , Humanos , Rios , Fatores de Tempo
7.
Environ Manage ; 43(4): 645-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18663518

RESUMO

Step-pools sequences are increasingly used to restore stream channels. This increase corresponds to significant advances in theory for step-pools in recent years. The need for step-pools in stream restoration arises as urban development encroaches into steep terrain in response to population pressures, as stream channels in lower-gradient areas require stabilization due to hydrological alterations associated with land-use changes, and as step-pools are recognized for their potential to enhance stream habitats. Despite an increasingly voluminous literature and great demand for restoration using step-pool sequences, however, the link between theory and practice is limited. In this article, we present four unique cases of stream restoration using step-pools, including the evolution of the approaches, the project designs, and adjustments in the system following restoration. Baxter Creek in El Cerrito, California demonstrates an early application of artificial step-pools in which natural adjustments occurred toward geomorphic stability and ecological improvement. Restoration of East Alamo Creek in a large residential development near San Ramon, California illustrates an example of step-pools increasingly used in locations where such a channel form would not naturally occur. Construction of a step-pool channel in Karnowsky Creek within the Siuslaw National Forest, Oregon overcame constraints posed by access and the type and availability of materials; the placement of logs allowed natural scouring below steps. Dry Canyon Creek on the property of the Mountains Restoration Trust in Calabasas, California afforded a somewhat experimental approach to designing step-pools, allowing observation and learning in the future. These cases demonstrate how theories and relationships developed for step-pool sequences over the past two decades have been applied in real-world settings. The lessons from these examples enable us to develop considerations useful for deriving an appropriate course of design, approval, and construction of artificial step-pool systems. They also raise additional fundamental questions concerning appropriate strategies for restoration of step-pool streams. Outstanding challenges are highlighted as opportunities for continuing theoretical work.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Rios
8.
Environ Manage ; 42(6): 933-45, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18810527

RESUMO

Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to "restore" pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Sedimentos Geológicos/análise , Rios , Salmão/fisiologia , Animais , Animais Selvagens , California , Meio Ambiente , Humanos , Modelos Biológicos , Comportamento Predatório , Movimentos da Água , Abastecimento de Água
9.
Environ Manage ; 29(4): 477-96, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12071499

RESUMO

Post-project appraisals (PPAs) can evaluate river restoration schemes in relation to their compliance with design, their short-term performance attainment, and their longer-term geomorphological compatibility with the catchment hydrology and sediment transport processes. PPAs provide the basis for communicating the results of one restoration scheme to another, thereby improving future restoration designs. They also supply essential performance feedback needed for adaptive management, in which management actions are treated as experiments. PPAs allow river restoration success to be defined both in terms of the scheme attaining its performance objectives and in providing a significant learning experience. Different levels of investment in PPA, in terms of pre-project data and follow-up information, bring with them different degrees of understanding and tbus different abilities to gauge both types of success. We present four case studies to illustrate how the commitment to PPA has determined the understanding achieved in each case. In Moore's Gulch (California, USA), understanding was severely constrained by the lack of pre-project data and post-implementation monitoring. Pre-project data existed for the Kitswell Brook (Hertfordshire, UK), but the monitoring consisted only of one site visit and thus the understanding achieved is related primarily to design compliance issues. The monitoring undertaken for Deep Run (Maryland, USA) and the River Idle (Nottinghamshire, UK) enabled some understanding of the short-term performance of each scheme. The transferable understanding gained from each case study is used to develop an illustrative five-fold classification of geomorphological PPAs (full, medium-term, short-term, one-shot, and remains) according to their potential as learning experiences. The learning experience is central to adaptive management but rarely articulated in the literature. Here, we gauge the potential via superimposition onto a previous schematic representation of the adaptive management process by Haney and Power (1996). Using PPAs wisely can lead to cutting-edge, complex solutions to river restoration challenges.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Fidelidade a Diretrizes , Inovação Organizacional , Comunicação , Humanos , Estudos de Casos Organizacionais , Avaliação de Programas e Projetos de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...