Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Nanobiotechnology ; 22(1): 606, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379969

RESUMO

Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.


Assuntos
Ferroptose , Nanotecnologia , Neoplasias , Ferroptose/efeitos dos fármacos , Humanos , Animais , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Biotecnologia/métodos , Ferro/metabolismo , Ferro/química , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
2.
Mitochondrial DNA B Resour ; 9(9): 1273-1277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328353

RESUMO

Rorippa palustris Besser 1821, a species of Brassicaceae, is widely distributed around the world and used for both food and traditional Chinese medicinal purposes. Despite the plant's significance, its genetic diversity must be better understood. In this study, we have successfully assembled and characterized a complete plastome of R. palustris, marking a significant advancement toward comprehending its genetic composition. The plastome is 154,674 bp long and harbors 128 genes, including 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Our phylogenomic analysis indicated that R. palustris is closely related to R. curvipes. These findings are crucial for conserving and utilizing this important plant species. They also highlight the potential for future research into the evolution and preservation of R. palustris, which could be advantageous in pharmaceutical applications.

3.
Hum Reprod Open ; 2024(3): hoae042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091587

RESUMO

STUDY QUESTION: Does abnormal serotonin homeostasis contribute to impaired endometrial decidualization in patients with recurrent implantation failure (RIF)? SUMMARY ANSWER: Abnormal serotonin homeostasis in patients with RIF, which is accompanied by decreased monoamine oxidase (MAO) expression, affects the decidualization of endometrial stromal cells and leads to embryo implantation failure. WHAT IS KNOWN ALREADY: Previous studies have indicated that the expression of MAO, which metabolizes serotonin, is reduced in the endometrium of patients with RIF, and serotonin can induce disruption of implantation in rats. However, whether abnormal serotonin homeostasis leads to impaired decidualization in patients with RIF and, if so, the mechanism involved, remains unclear. STUDY DESIGN SIZE DURATION: Endometrial samples from 25 patients with RIF and 25 fertile patients were used to investigate the expression levels of monoamine oxidase A (MAOA), monoamine oxidase B (MAOB), and serotonin. We isolated human endometrial stromal cells to investigate the role of MAOA, MAOB, and serotonin in inducing decidualization in vitro and further explored the underlying mechanism using RNA-sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC/MS) analyses. PARTICIPANTS/MATERIALS SETTING METHODS: The levels of serotonin in the endometrium of patients with RIF were detected by ELISA and immunohistofluorescence, and the key genes involved in abnormal serotonin metabolism were analyzed via combination with single-cell sequencing data. The effects of MAOA or MAOB on the decidualization of stromal cells were investigated using an in vitro human endometrial stromal cell-induced decidualization model and a mouse artificially induced decidualization model. The potential mechanisms by which MAOA and MAOB regulate decidualization were explored by RNA-seq and LC/MS analysis. MAIN RESULTS AND THE ROLE OF CHANCE: We found that women with RIF have abnormal serotonin metabolism in the endometrium and attenuated MAO in endometrial stromal cells. Endometrial decidualization was accompanied by increased MAO in vivo and in vitro. However attenuated MAO caused an increased local serotonin content in the endometrium, impairing stromal cell decidualization. RNA-seq and LC/MS analyses showed that abnormal lipid metabolism, especially phosphatidylcholine metabolism, was involved in the defective decidualization caused by MAO deficiency. Furthermore, decidualization defects were rescued by phosphatidylcholine supplementation. LARGE SCALE DATA: RNA-seq information and raw data can be found at NCBI Bioproject number PRJNA892255. LIMITATIONS REASONS FOR CAUTION: This study revealed that impaired serotonin metabolic homeostasis and abnormally reduced MAO expression were among the reasons for RIF. However, the source and other potential functions of serotonin in the endometrium remain to be further explored. WIDER IMPLICATIONS OF THE FINDINGS: This study provides new insights into the mechanisms of serotonin homeostasis in human endometrial decidualization and new biomarkers or targets for the treatment of patients with RIF. STUDY FUNDING/COMPETING INTERESTS: X. Sheng is supported by grants from the National Natural Science Foundation of China (82001629), the Wenzhou Basic Public Welfare Research Project (Y20240030), the Youth Program of Natural Science Foundation of Jiangsu Province (BK20200116), and Jiangsu Province Postdoctoral Research Funding (2021K277B). H.S. is supported by grants from the National Natural Science Foundation of China (82030040). G.Y. is supported by grants from the National Natural Science Foundation of China (82171653). The authors declare no conflicts of interest.

4.
Small ; : e2401398, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101277

RESUMO

Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.

5.
Mitochondrial DNA B Resour ; 9(8): 1048-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139658

RESUMO

Lindernia crustacea (L.) F. Muell 1882, a species in the Linderniaceae family, holds traditional medicinal value in China. To investigate its genetic diversity, we assembled, annotated, and characterized the first complete chloroplast genome of L. crustacea using Illumina sequencing data and various bioinformatics tools. The genome is 153,647 bp in length, with a GC content of 37.6%. It exhibits a typical quadripartite structure, consisting of a large single-copy region (LSC) of 85,411 bp, a small single-copy region (SSC) of 18,724 bp, and two inverted repeat sequences (IRa and IRb) of 25,816 bp each. The genome was predicted to contain 131 genes, including 87 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenomic analysis indicated that L. crustacea is closely related to L. stricta. These findings provide a foundation for further research on the evolution and potential medicinal applications of the Linderniaceae family.

6.
Front Genet ; 15: 1407202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966008

RESUMO

Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.

7.
Nat Commun ; 15(1): 5508, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951161

RESUMO

Keratoconus, a disorder characterized by corneal thinning and weakening, results in vision loss. Corneal crosslinking (CXL) can halt the progression of keratoconus. The development of accelerated corneal crosslinking (A-CXL) protocols to shorten the treatment time has been hampered by the rapid depletion of stromal oxygen when higher UVA intensities are used, resulting in a reduced cross-linking effect. It is therefore imperative to develop better methods to increase the oxygen concentration within the corneal stroma during the A-CXL process. Photocatalytic oxygen-generating nanomaterials are promising candidates to solve the hypoxia problem during A-CXL. Biocompatible graphitic carbon nitride (g-C3N4) quantum dots (QDs)-based oxygen self-sufficient platforms including g-C3N4 QDs and riboflavin/g-C3N4 QDs composites (RF@g-C3N4 QDs) have been developed in this study. Both display excellent photocatalytic oxygen generation ability, high reactive oxygen species (ROS) yield, and excellent biosafety. More importantly, the A-CXL effect of the g-C3N4 QDs or RF@g-C3N4 QDs composite on male New Zealand white rabbits is better than that of the riboflavin 5'-phosphate sodium (RF) A-CXL protocol under the same conditions, indicating excellent strengthening of the cornea after A-CXL treatments. These lead us to suggest the potential application of g-C3N4 QDs in A-CXL for corneal ectasias and other corneal diseases.


Assuntos
Reagentes de Ligações Cruzadas , Grafite , Oxigênio , Pontos Quânticos , Riboflavina , Pontos Quânticos/química , Animais , Grafite/química , Oxigênio/metabolismo , Riboflavina/farmacologia , Coelhos , Masculino , Reagentes de Ligações Cruzadas/química , Compostos de Nitrogênio/química , Espécies Reativas de Oxigênio/metabolismo , Ceratocone/tratamento farmacológico , Ceratocone/metabolismo , Raios Ultravioleta , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Substância Própria/metabolismo , Substância Própria/efeitos dos fármacos
8.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000679

RESUMO

Wearable electronic sensors have recently attracted tremendous attention in applications such as personal health monitoring, human movement detection, and sensory skins as they offer a promising alternative to counterparts made from traditional metallic conductors and bulky metallic conductors. However, the real-world use of most wearable sensors is often hindered by their limited stretchability and sensitivity, and ultimately, their difficulty to integrate into textiles. To overcome these limitations, wearable sensors can incorporate flexible conductive fibers as electrically active components. In this study, we adopt a scalable wet-spinning approach to directly produce flexible and conductive fibers from aqueous mixtures of Ti3C2Tx MXene and natural rubber (NR). The electrical conductivity and stretchability of these fibers were tuned by varying their MXene loading, enabling knittability into textiles for wearable sensors. As individual filaments, these MXene/NR fibers exhibit suitable conductivity dependence on strain variations, making them ideal for motivating sensors. Meanwhile, textiles from knitted MXene/NR fibers demonstrate great stability as capacitive touch sensors. Collectively, we believe that these elastic and conductive MXene/NR-based fibers and textiles are promising candidates for wearable sensors and smart textiles.

9.
BMC Endocr Disord ; 24(1): 88, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867205

RESUMO

BACKGROUND: Patients with primary hyperparathyroidism (PHPT) are at risk for severe hypocalcemia (SH) following parathyroidectomy (PTX), but limited data exist on the predictors of SH. We aimed to identify risk factors for early postoperative SH after PTX in patients with PHPT and to evaluate the predictive value of clinical parameters. METHODS: A retrospective review of patients with PHPT who underwent PTX between January 2010 and December 2022 was performed. A total of 46 patients were included in the study, with 15 (32.6%) experiencing postoperative SH, 19 (41.3%) having calculi in the ureter or kidney, and 37 (80.4%) having osteoporosis. Patients were divided into SH and non-SH groups based on postoperative serum calcium levels. Preoperative biochemical indicators, bone turnover markers, and renal function parameters were analyzed and correlated with postoperative SH. RESULTS: Statistically significant (P < 0.05) differences were found in preoperative serum calcium (serum Ca), intact parathyroid hormone, serum phosphorus (serum P), serum Ca/P, percentage decrease of serum Ca, total procollagen type 1 intact N-terminal propeptide, osteocalcin (OC), and alkaline phosphatase levels between the two groups. Multivariate analysis showed that serum P (odds ratio [OR] = 0.989; 95% confidence interval [95% CI] = 0.981-0.996; P = 0.003), serum Ca (OR = 0.007; 95% CI = 0.001-0.415; P = 0.017), serum Ca/P (OR = 0.135; 95% CI = 0.019-0.947; P = 0.044) and OC levels (OR = 1.012; 95% CI = 1.001-1.024; P = 0.036) were predictors of early postoperative SH. The receiver operating characteristic curve analysis revealed that serum P (area under the curve [AUC] = 0.859, P < 0.001), serum Ca/P (AUC = 0.735, P = 0.010) and OC (AUC = 0.729, P = 0.013) had high sensitivity and specificity. CONCLUSION: Preoperative serum P, serum Ca/P and osteocalcin levels may identify patients with PHPT at risk for early postoperative SH after PTX.


Assuntos
Hiperparatireoidismo Primário , Hipocalcemia , Paratireoidectomia , Complicações Pós-Operatórias , Humanos , Hiperparatireoidismo Primário/cirurgia , Hiperparatireoidismo Primário/sangue , Hiperparatireoidismo Primário/complicações , Feminino , Masculino , Paratireoidectomia/efeitos adversos , Pessoa de Meia-Idade , Fatores de Risco , Estudos Retrospectivos , Estudos de Casos e Controles , Hipocalcemia/etiologia , Hipocalcemia/sangue , Hipocalcemia/epidemiologia , Hipocalcemia/diagnóstico , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/diagnóstico , Idoso , Cálcio/sangue , Prognóstico , Biomarcadores/sangue , Adulto , Seguimentos , Hormônio Paratireóideo/sangue
10.
Nat Nanotechnol ; 19(9): 1386-1398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38898135

RESUMO

The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.


Assuntos
Aterosclerose , Ácidos Docosa-Hexaenoicos , Macrófagos , Nanoestruturas , Fósforo , Espécies Reativas de Oxigênio , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Fósforo/química , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
11.
Adv Mater ; 36(41): e2401495, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851884

RESUMO

The tumor microenvironment (TME) of typical tumor types such as triple-negative breast cancer is featured by hypoxia and immunosuppression with abundant tumor-associated macrophages (TAMs), which also emerge as potential therapeutic targets for antitumor therapy. M1-like macrophage-derived exosomes (M1-Exos) have emerged as a promising tumor therapeutic candidate for their tumor-targeting and macrophage-polarization capabilities. However, the limited drug-loading efficiency and stability of M1-Exos have hindered their effectiveness in antitumor applications. Here, a hybrid nanovesicle is developed by integrating M1-Exos with AS1411 aptamer-conjugated liposomes (AApt-Lips), termed M1E/AALs. The obtained M1E/AALs are loaded with perfluorotributylamine (PFTBA) and IR780, as P-I, to construct P-I@M1E/AALs for reprogramming TME by alleviating tumor hypoxia and engineering TAMs. P-I@M1E/AAL-mediated tumor therapy enhances the in situ generation of reactive oxygen species, repolarizes TAMs toward an antitumor phenotype, and promotes the infiltration of T lymphocytes. The synergistic antitumor therapy based on P-I@M1E/AALs significantly suppresses tumor growth and prolongs the survival of 4T1-tumor-bearing mice. By integrating multiple treatment modalities, P-I@M1E/AAL nanoplatform demonstrates a promising therapeutic approach for overcoming hypoxic and immunosuppressive TME by targeted TAM reprogramming and enhanced tumor photodynamic immunotherapy. This study highlights an innovative TAM-engineering hybrid nanovesicle platform for the treatment of tumors characterized by hypoxic and immunosuppressive TME.


Assuntos
Lipossomos , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Camundongos , Lipossomos/química , Linhagem Celular Tumoral , Exossomos/química , Exossomos/metabolismo , Aptâmeros de Nucleotídeos/química , Feminino , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
12.
Trends Biotechnol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821834

RESUMO

Ocular disorders remain a major global health challenge with unmet medical needs. RNA nanomedicine has shown significant therapeutic benefits and safety profiles in patients with complex eye disorders, already benefiting numerous patients with gene-related eye disorders. The effective delivery of RNA to the unique structure of the eye is challenging owing to RNA instability, off-target effects, and ocular physiological barriers. Specifically tailored RNA medication, coupled with sophisticated engineered delivery platforms, is crucial to guide and advance developments in treatments for oculopathy. Herein we review recent advances in RNA-based nanomedicine, innovative delivery strategies, and current clinical progress and present challenges in ocular disease therapy.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124514, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805991

RESUMO

Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.


Assuntos
Corantes Fluorescentes , Mercúrio , Peptídeos , Peixe-Zebra , Mercúrio/análise , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Peptídeos/química , Peptídeos/análise , Espectrometria de Fluorescência , Limite de Detecção , Enxofre/química , Enxofre/análise , Poluentes Químicos da Água/análise , Imagem Óptica , Células HeLa , Íons/análise
14.
ACS Omega ; 9(18): 20410-20424, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737081

RESUMO

The droplet-to-iron electrochemical reaction is common in nature and industrial production, and it causes damage to the economy, safety, and the environment. The electrochemical reaction of droplet-to-iron is a coupling process of wetting and corrosion. Presently, investigations into electrochemical reactions mainly focus on the corrosions caused by a solution, and wetting is rarely considered. However, for the droplet-to-iron electrochemical reaction, the mechanism of charge transfer in the process is still unclear. In this paper, a reactive molecular dynamics simulation model for the droplet-to-iron electrochemical reaction is developed for the first time. The electrochemical reaction of droplet-to-iron is studied, and the interaction between droplet wetting and corrosion on iron is investigated. The effects of temperature, electric field strength, and salt concentration on the electrochemical reaction are explored. Results show that droplet wetting on the iron surface and the formation of a single-molecular-layer ordered structure are prerequisites for corrosion. The hydroxyl radicals that penetrate the ordered structure acquire electrons from iron atoms on the substrate surface under the action of Coulomb forces and form iron-containing oxides with these iron atoms. The corrosion products and craters lead to a reduced droplet height, which promotes droplet wetting on iron and further intensifies the droplet-to-iron electrochemical reaction.

15.
Sci Technol Adv Mater ; 25(1): 2345041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742153

RESUMO

Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.


This review emphasizes the significant impact of integrating nanoarchitectonics into aptamer-based electrochemical biosensors for exosome detection, thereby enhancing early disease detection and monitoring disease progression in clinical settings.

17.
Nanoscale ; 16(18): 8791-8806, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38606497

RESUMO

This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina Tradicional Chinesa , Nanotecnologia , Humanos , Terapia por Acupuntura , Medicamentos de Ervas Chinesas/química
18.
Mater Horiz ; 11(10): 2457-2468, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465967

RESUMO

In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanopartículas , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Camundongos , Fenômenos Eletrofisiológicos/fisiologia , Raios Infravermelhos , Humanos , Masculino , Ratos , Potenciais de Ação/fisiologia , Corantes Fluorescentes
19.
Chem Soc Rev ; 53(8): 3656-3686, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38502089

RESUMO

Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.


Assuntos
Ouro , Ouro/química , Humanos , Propriedades de Superfície , Nanopartículas Metálicas/química , Odontologia , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos
20.
Nat Commun ; 15(1): 2341, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491065

RESUMO

Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 µm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.


Assuntos
Elementos da Série dos Lantanídeos , Animais , Camundongos , Elementos da Série dos Lantanídeos/química , Temperatura , Luminescência , Diagnóstico por Imagem , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...