Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118386, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782308

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Millingtonia hortensis L.f., commonly known as tree jasmine or Indian cork tree, is native to South Asia and Southeast Asia. Traditionally, its stem bark, leaves, and roots are employed for pulmonary, gastrointestinal, and antimicrobial purposes, while the flowers are used in treating asthma and sinusitis. AIM OF THE STUDY: The underlying anti-inflammatory mechanisms of M. hortensis remain relatively unexplored. Therefore, we studied the anti-inflammatory effects of M. hortensis and the molecular mechanisms of its ethanol extracts (Mh-EE) both in vitro and in vivo. MATERIALS AND METHODS: Nitric oxide (NO) production was assessed using Griess reagent, while cell viability of RAW264.7 cell and HEK293T cells were determined via the MTT assay. Constituent analysis of Mh-EE using GC/MS-MS and HPLC, and mRNA expression of inflammatory cytokines was measured through PCR and RT-PCR. Protein levels were analyzed using western blotting. The thermal stability of Mh-EE was evaluated by CESTA. Lastly, a gastritis in vivo model was induced by HCl/EtOH, and protein expression levels were measured using western blotting. RESULTS: Mh-EE significantly reduced NO production in LPS-induced RAW264.7 cells without substantially affecting cell viability. Additionally, Mh-EE decreased the expression of proinflammatory factors, such as iNOS, IL-1ß and COX2. Furthermore, Mh-EE downregulated TLR4 expression, altered MyD88 recruitment, and suppressed phosphorylation of Syk, IKKα, IκBα and AKT. Simultaneously, Mh-EE also attenuated NF-κB signaling in HCl/EtOH-induced mice. CONCLUSIONS: Mh-EE exerts anti-inflammatory effects by suppressing p-Syk in the NF-κB pathway, and it has potential as a novel treatment agent for inflammatory diseases.


Assuntos
Anti-Inflamatórios , Etanol , NF-kappa B , Óxido Nítrico , Extratos Vegetais , Transdução de Sinais , Quinase Syk , Animais , Quinase Syk/metabolismo , Extratos Vegetais/farmacologia , Células RAW 264.7 , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , NF-kappa B/metabolismo , Humanos , Etanol/química , Células HEK293 , Óxido Nítrico/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Gastrite/tratamento farmacológico , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Solventes/química , Receptor 4 Toll-Like/metabolismo
2.
J Ethnopharmacol ; 332: 118374, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38789093

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY: The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS: We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS: In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS: In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Melaninas , Picrasma , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Picrasma/química , Antioxidantes/farmacologia , Melaninas/metabolismo , Etanol/química , Células HaCaT , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
3.
Life (Basel) ; 14(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672774

RESUMO

Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.

4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895912

RESUMO

Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.

5.
Nutrients ; 15(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686782

RESUMO

Avenanthramides (Avns) and their derivatives, a group of polyphenolic compounds found abundantly in oats (Avena sativa Linn.), have emerged as promising candidates for neuroprotection due to their immense antioxidant, anti-inflammatory, and anti-apoptotic properties. Neurodegenerative diseases (NDDs), characterized by the progressive degeneration of neurons, present a significant global health burden with limited therapeutic options. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a crucial role in cell survival, growth, and metabolism, making it an attractive target for therapeutic intervention. The dysregulation of PI3K signaling has been implicated in the pathogenesis of various NDDs including Alzheimer's and Parkinson's disease. Avns have been shown to modulate PI3K/AKT signaling, leading to increased neuronal survival, reduced oxidative stress, and improved cognitive function. This review explores the potential of Avn polyphenols as modulators of the PI3K signaling pathway, focusing on their beneficial effects against NDDs. Further, we outline the need for clinical exploration to elucidate the specific mechanisms of Avn action on the PI3K/AKT pathway and its potential interactions with other signaling cascades involved in neurodegeneration. Based on the available literature, using relevant keywords from Google Scholar, PubMed, Scopus, Science Direct, and Web of Science, our review emphasizes the potential of using Avns as a therapeutic strategy for NDDs and warrants further investigation and clinical exploration.


Assuntos
Avena , Doenças Neurodegenerativas , Fosfatidilinositol 3-Quinases , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Grão Comestível , Fosfatidilinositol 3-Quinase
6.
Life (Basel) ; 13(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37629545

RESUMO

Alzheimer's disease (AD) is an age-related neuropsychiatric disorder and a common cause of progressive dementia. Diltiazem (DTZ), the non-dihydropyridine benzothiazepine class of calcium channel blocker (CCB), used clinically in angina and other cardiovascular disorders, has proven neurological benefits. In the present study, the neuroprotective anti-dementia effects of DTZ against intra-cerebroventricular-streptozotocin (ICV-STZ)-induced sporadic AD (SAD)-type rat model was investigated. ICV-STZ-induced cognitive impairments were measured via passive avoidance and Morris water maze tasks. Anti-oxidative enzyme status, pro-inflammatory markers, and amyloid-beta (Aß) protein expression in rat brain tissues were measured using ELISA kits, Western blotting, and immunostaining techniques. The data revealed that ICV-STZ injection in rats significantly induced cognitive deficits and altered the levels of oxidative and pro-inflammatory markers (p < 0.05~p < 0.001). Treatment with DTZ (10 mg/kg, 20 mg/kg, and 40 mg/kg, p.o.) daily for twenty-one days, 1 h before a single ICV-STZ (3 mg/kg) injection, significantly improved cognitive impairments and ameliorated the ICV-STZ-induced altered nitrite, pro-inflammatory cytokines (TNF-α, and IL-1ß) and anti-oxidative enzyme levels (superoxide dismutase, lipid peroxidation, and glutathione). Further, DTZ restored the increased Aß protein expression in ICV-STZ-induced brain tissue. Considering the results obtained, DTZ might have a potential therapeutic role in treating and managing AD and related dementia pathologies due to its anti-dementia activity in SAD-type conditions in rats induced by ICV-STZ.

7.
Mitochondrion ; 72: 59-71, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495165

RESUMO

Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/patologia
8.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889539

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.


Assuntos
Fenômenos Biológicos , Dermatite Atópica , Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-35607518

RESUMO

Objective: Duchesnea indica has been reported for its anti-inflammatory properties. However, its efficacy in sepsis has yet to be reported. In this study, we studied the ability of Duchesnea indica extract (DIE) to rescue mice from septic shock and sepsis. Methods: In vitro studies included the measurement of secreted nitric oxide, cell viability, gene and protein expression via real-time polymerase chain reaction and western blot, and confocal microscopy in RAW 264.7 cells. In vivo studies include a model of septic shock and sepsis in BALB/c mice induced by a lethal and sub-lethal dose of lipopolysaccharide (LPS). Results: DIE suppressed the expression of proinflammatory cytokines induced by LPS and prevented the translocation of NFκB into the nucleus of RAW 264.7 cells. It also prevented reactive oxygen species damage induced by LPS in murine bone marrow-derived macrophages. Models of sepsis and septic shock were established in BALB/c mice and DIE-rescued mice from septic shock. DIE also reversed the increase in tumor necrosis factor-α and nitrite levels in the serum of mice induced with sepsis. DIE also prevented the translocation of NFκB from the cytosol into the nucleus in murine lungs. Histopathological damage induced by sepsis was reversed in the testis, liver, and lungs of mice. Conclusion: In conclusion, DIE is a suitable candidate for development as a therapeutic agent for sepsis.

10.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335140

RESUMO

Testicular oxidative stress is one of the most common factors underlying male infertility. Welted thistle, Carduus crispus Linn., and its bioactive principles are attracting scientific interest in treating male reproductive dysfunctions. Here, the protective effects of apigenin isolated from C. crispus against oxidative damage induced by hydrogen peroxide (H2O2) and dysregulation in spermatogenesis associated parameters in testicular sperm cells was investigated. Cell viabilities, ROS scavenging effects, and spermatogenic associated molecular expressions were measured by MTT, DCF-DA, Western blotting and real-time RT-PCR, respectively. A single peak with 100% purity of apigenin was obtained in HPLC conditions. Apigenin treated alone (2.5, 5, 10 and 20 µM) did not exhibit cytotoxicity, but inhibited the H2O2-induced cellular damage and elevated ROS levels significantly (p < 0.05 at 5, 10 and 20 µM) and dose-dependently. Further, H2O2-induced down-regulation of antioxidant (glutathione S-transferases m5, glutathione peroxidase 4, and peroxiredoxin 3) and spermatogenesis-associated (nectin-2 and phosphorylated-cAMP response element-binding protein) molecular expression in GC-2spd cells were attenuated by apigenin at both protein and mRNA levels (p < 0.05). In conclusion, our study showed that apigenin isolated from C. crispus might be an effective agent that can protect ROS-induced testicular dysfunctions.


Assuntos
Apigenina , Carduus , Apigenina/metabolismo , Apigenina/farmacologia , Carduus/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Espermatogênese , Espermatozoides/metabolismo
11.
Mycobiology ; 50(1): 89-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291597

RESUMO

Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1ß, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

12.
Pharm Biol ; 60(1): 404-416, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35175170

RESUMO

CONTEXT: Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE: The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 µg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS: COR treatment (1, 5, and 10 µg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION: COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.


Assuntos
Desoxiadenosinas/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Envelhecimento , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cordyceps/química , Desoxiadenosinas/isolamento & purificação , Peróxido de Hidrogênio , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Nutrients ; 13(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34836313

RESUMO

Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.


Assuntos
Envelhecimento , Suplementos Nutricionais , Inflamação/dietoterapia , Nutrientes , Humanos , Imunossenescência , Inflamação/prevenção & controle , Patentes como Assunto
14.
J Inflamm Res ; 14: 3555-3568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335042

RESUMO

PURPOSE: The pathogenesis of osteoarthritis (OA) is characterized by joint degeneration. The pro-inflammatory cytokine interleukin (IL)-1ß plays a vital role in the pathogenesis of OA by stimulation of specific signaling pathways like NF-κB, PI3K/Akt, and MAPKs pathways. The catabolic role of growth factors in the OA may be inhibited cytokine-activated pathogen. The purpose of this study was to investigate the potential effects of insulin-like growth factor-1 (IGF-1) on IL-1ß-induced apoptosis in rabbit chondrocytes in vitro and in an in vivo rabbit knee OA model. METHODS: In the present study, the OA developed in chondrocyte with the treatment of IL-1ß and articular cartilage ruptures by removal of cartilage from the rabbit knee femoral condyle. After IGF-1 treatment, immunohistochemistry and qRT-PCR were identified OA expression with changes in MMPs (matrix metalloproteinases). The production of ROS (intracellular reactive oxygen species) in the OA was detected by flow cytometry. Further, the disease progression was microscopically investigated and pathophysiological changes were analyzed using histology. The NF-κB, PI3K/Akt and P38 (MAPK) specific pathways that are associated with disease progression were also checked using the Western blot technique. RESULTS: The expression of MMPs and various apoptotic markers are down-regulated following administration of IGF-1 in a dose-dependent fashion while significantly up-regulation of TIMP-1. The results showed that higher levels of ROS were observed upon treatment of chondrocytes and chondral OA with IL-1ß. Collectively, our results indicated that IGF-1 protected NF-κB pathway by suppression of PI3K/Akt and MAPKs specific pathways. Furthermore, the macroscopic and pathological investigation showed that it has a chondroprotective effect by the formation of hyaline cartilage. CONCLUSION: Our results indicate a protective effect of IGF-1 against OA pathogenesis by inhibition of NF-κB signaling via regulation of the MAPK and PI3K/Akt signaling pathways and prevention of apoptosis by suppression of ROS production.

15.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299073

RESUMO

Theasinensin A (TSA) is a major group of catechin dimers mainly found in oolong tea and black tea. This compound is also manufactured with epigallocatechin gallate (EGCG) as a substrate and is refined after the enzyme reaction. In previous studies, TSA has been reported to be effective against inflammation. However, the effect of these substances on skin melanin formation remains unknown. In this study, we unraveled the role of TSA in melanogenesis using mouse melanoma B16F10 cells and normal human epidermal melanocytes (NHEMs) through reverse transcription polymerase chain reaction (RT-PCR), Western blotting analysis, luciferase reporter assay, and enzyme-linked immunosorbent assay analysis. TSA inhibited melanin formation and secretion in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 cells and NHEMs. TSA down-regulated the mRNA expression of tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and Tyrp2, which are all related to melanin formation in these cells. TSA was able to suppress the activities of certain proteins in the melanocortin 1 receptor (MC1R) signaling pathway associated with melanin synthesis in B16F10 cells: cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), protein kinase A (PKA), tyrosinase, and microphthalmia-associated transcription factor (MITF). We also confirmed α-MSH-mediated CREB activities through a luciferase reporter assay, and that the quantities of cAMP were reduced by TSA in the enzyme linked immunosorbent assay (ELISA) results. Based on these findings, TSA should be considered an effective inhibitor of hyperpigmentation.


Assuntos
Benzopiranos/farmacologia , AMP Cíclico/metabolismo , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Fenóis/farmacologia , Animais , Humanos , Melanócitos/citologia , Melanócitos/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Fosforilação , Transdução de Sinais
16.
EXCLI J ; 20: 835-850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177406

RESUMO

Coriandrum sativum Linn. (family: Umbelliferae; C. sativum), is a potential herb widely used as a spice and traditional medicine. In the present work, the effects of C. sativum fruit extract (CSE), against lipopolysaccharide (LPS)-stimulated BV-2 microglia-mediated neuroinflammation in vitro and 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) animal model in vivo was investigated. LPS-stimulated increase in nitric oxide (NO), inducible NO synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-alpha were significantly (p < 0.05 ~ p < 0.001) inhibited by CSE (25, 50 and 100 µg/mL) in BV-2 microglial cells. Further, CSE inhibited the LPS-induced nuclear factor of kappa-beta activation and IκB-α phosphorylation in BV-2 microglia. In vivo studies, CSE (100, 200 and 300 mg/kg) ameliorated the MPTP (25 mg/kg, i.p.)-induced changes in locomotor, cognitive and behavior functions evaluated by rotarod, passive avoidance and open field test significantly (p < 0.05 ~ p < 0.001). The MPTP-induced changes in brain oxidative enzyme levels such as superoxide dismutase, catalase, and lipid peroxidation were significantly (p < 0.01 and p < 0.001 at 200 and 300 mg/kg, respectively) restored with CSE treatment. High-performance thin-layer chromatography fingerprinting analysis of CSE exhibited several distinctive peaks with quercetin and kaempferol-3O-glucoside as identifiable compounds. In conclusion, our study indicated that CSE attenuated neuroinflammatory processes in LPS-stimulated microglia in vitro and restored the MPTP-induced behavioral deficits and brain oxidative enzyme status in vivo proving its therapeutic potential in the treatment of neuroinflammatory and oxidative stress-mediated neurodegeneration seen in PD.

17.
J Ginseng Res ; 45(3): 450-455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025138

RESUMO

Korean Red Ginseng (KRG) is an herbal oriental medicine known to alleviate cardiovascular dysfunction. To analysis the expression of diabetic cardiac complication-associated genes in db/db mice, we studied the cardiac gene expression following KRG treatment. In result, a total of 585 genes were found to be changed in db/db mice. Among the changed expression, 245 genes were found to 2-fold upregulated, and 340 genes were 2-fold downregulated. In addition, the changed gene expressions were ameliorated by KRG. In conclusion, KRG may be possible to normalize cardiac gene expressions in db/db mice.

18.
Cytotechnology ; 73(1): 127-138, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33505120

RESUMO

Sorbaria kirilowii (Regel) Maxim, a plant found in China, Korea, Japan, and east of Europe, is a common herb used for traditional medicinal purposes. However, its ability to prevent photoaging has not been studied. In this study, we investigated the anti-photoaging functions of an ethanol extract (Sk-EE) of S. kirilowii (Regel) Maxim using human keratinocytes exposed to UVB. First, we analyzed the cytotoxicity of Sk-EE. Then, we determine the expression of genes related to inflammation, collagen degradation, and moisture retention. We also explored the anti-photoaging mechanism of Sk-EE by determining correlated signaling pathways and target molecules using reporter gene assays and immunoblotting analyses. Sk-EE treatment of cells increased hyaluronic acid synthase (HAS), filaggrin (FLG), and collagen type I alpha 1 (COL1A1) expression. Sk-EE dose-dependently inhibited the UVB-induced expression of matrix metalloproteinases (MMPs) 1, 2, 9 and cyclooxygenase (COX)-2 by blocking the activator protein (AP)-1 signaling pathway, in particular the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular response kinase (ERK). In addition, c-Fos and c-Jun were targeted by Sk-EE. Our results indicate that Sk-EE has anti-inflammatory and skin-protective properties, and could be a candidate to treat signs of photoaging.

19.
EXCLI J ; 19: 71-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038117

RESUMO

The quest for chemical entities able to curb the action of the phosphoinositide 3-kinase, (PI3K)/protein kinase B (AKT) signaling pathways is evolving as a potential therapeutic strategy for the treatment and/or prevention of neurodegenerative disorders including Alzheimer's disease (AD). In this study, the effects of a PI3K inhibitor, AS605240 on cognitive dysfunction and antioxidative defense parameters against intra-cerebroventricular-streptozotocin (ICV-STZ)-induced rat model of sporadic AD was evaluated. ICV administration of a single dose of STZ (3 mg/kg) was performed to induce behavioral and biochemical changes in rats using the stereotaxic technique. Animals were administered with varying doses of AS605240 (5, 10 and 15 mg/kg) orally, 1 h before ICV-STZ on day 1 and continued once daily for four weeks. The behavioral parameters (passive avoidance and Morris water maze), antioxidative defense parameters, amyloid-beta (Aß) protein expression by Western blotting and immunostaining technique were estimated in brain tissue. AS605240 dose-dependently and significantly (p < 0.05 and p < 0.01 and p < 0.001) improved ICV-STZ-induced cognitive impairment and attenuated the altered antioxidative related parameters including superoxide dismutase, lipid peroxidation, glutathione and nitrite levels. Further, the increased Aß protein expression levels in brain tissue were markedly restored with AS605240 treatment. In conclusion, our study demonstrated that AS605240 exhibited immense potential in attenuating STZ-induced sporadic AD features in rats and may be developed as a therapeutic agent in the treatment and management of sporadic AD.

20.
J Ethnopharmacol ; 251: 112564, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31926987

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Meyer (Araliaceae), has been used in traditional medicine for preventive and therapeutic purposes in Asian countries. One of the active ginsenoside metabolites, 20(S)-Protopanaxatriol (PPT), has been associated with diverse pharmacological effects, including anti-inflammatory properties. AIM OF THE STUDY: Although the capacity of PPT as an anti-inflammatory agent has been studied, this study aimed to explore the intrinsic mechanism of PPT in regulating inflammasome activation-mediated inflammatory responses in experimental models. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-primed peritoneal macrophages in vitro was used to study the role of PPT on inflammasome activation. LPS-induced septic shock and monosodium urate (MSU)-induced murine peritonitis models were employed for in vivo evaluations. RESULTS: PPT attenuated NLRP3 inflammasome activation and also reduced ASC oligomerization, leading to attenuation of interleukin (IL)-1ß secretion. Further, PPT inhibited IL-1ß secretion in both LPS-induced septic shock and MSU-induced mouse peritonitis models. CONCLUSIONS: This study revealed that ginsenoside metabolite PPT, inhibits inflammation-mediated inflammasome activation and supported the traditional use of ginseng in treating various inflammatory disorders.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Panax , Peritonite/tratamento farmacológico , Sapogeninas/uso terapêutico , Choque Séptico/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Ginsenosídeos/metabolismo , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Peritonite/imunologia , Sapogeninas/farmacologia , Choque Séptico/imunologia , Ácido Úrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA