Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 14(1): 23, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39396990

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease. Accumulating evidence strongly suggests that intrinsic muscle defects exist and contribute to disease progression, including imbalances in whole-body metabolic homeostasis. We have previously reported that tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor inducible 14 (Fn14) are significantly upregulated in skeletal muscle of the SOD1G93A ALS mouse model. While antagonising TWEAK did not impact survival, we did observe positive effects in skeletal muscle. Given that Fn14 has been proposed as the main effector of the TWEAK/Fn14 activity and that Fn14 can act independently from TWEAK in muscle, we suggest that manipulating Fn14 instead of TWEAK in the SOD1G93A ALS mice could lead to differential and potentially improved benefits. METHODS: We thus investigated the contribution of Fn14 to disease phenotypes in the SOD1G93A ALS mice. To do so, Fn14 knockout mice (Fn14-/-) were crossed onto the SOD1G93A background to generate SOD1G93A;Fn14-/- mice. Investigations were performed on both unexercised and exercised (rotarod and/or grid test) animals (wild type (WT), Fn14-/-, SOD1G93A and SOD1G93A;Fn14-/-). RESULTS: Here, we firstly confirm that the TWEAK/Fn14 pathway is dysregulated in skeletal muscle of SOD1G93A mice. We then show that Fn14-depleted SOD1G93A mice display increased lifespan, myofiber size, neuromuscular junction endplate area as well as altered expression of known molecular effectors of the TWEAK/Fn14 pathway, without an impact on motor function. Importantly, we also observe a complex interaction between exercise (rotarod and grid test), genotype, disease state and sex that influences the overall effects of Fn14 deletion on survival, expression of known molecular effectors of the TWEAK/Fn14 pathway, expression of myosin heavy chain isoforms and myofiber size. CONCLUSIONS: Our study provides further insights on the different roles of the TWEAK/Fn14 pathway in pathological skeletal muscle and how they can be influenced by age, disease, sex and exercise. This is particularly relevant in the ALS field, where combinatorial therapies that include exercise regimens are currently being explored. As such, a better understanding and consideration of the interactions between treatments, muscle metabolism, sex and exercise will be of importance in future studies.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Camundongos Transgênicos , Músculo Esquelético , Receptor de TWEAK , Animais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Feminino , Camundongos , Condicionamento Físico Animal , Camundongos Knockout , Citocina TWEAK/metabolismo , Citocina TWEAK/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Endogâmicos C57BL
2.
EMBO Mol Med ; 15(11): e17683, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37724723

RESUMO

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.


Assuntos
Atrofia Muscular Espinal , Qualidade de Vida , Animais , Humanos , Lactente , Camundongos , Éxons , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/uso terapêutico
3.
RNA ; 22(3): 467-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26729921

RESUMO

In mammalian cells under oxidative stress, the methionyl-tRNA synthetase (MetRS) misacylates noncognate tRNAs at frequencies as high as 10% distributed among up to 28 tRNA species. Instead of being detrimental for the cell, misincorporation of methionine residues in the proteome reduces the risk of oxidative damage to proteins, which aids the oxidative stress response. tRNA microarrays have been essential for the detection of the full pattern of misacylated tRNAs, but have limited capacity to investigate the misacylation and mistranslation mechanisms in live cells. Here we develop a dual-fluorescence reporter to specifically measure methionine misincorporation at glutamic acid codons GAA and GAG via tRNA(Glu) mismethionylation in human cells. Our method relies on mutating a specific Met codon in the active site of the fluorescent protein mCherry to a Glu codon that renders mCherry nonfluorescent when translation follows the genetic code. Mistranslation utilizing mismethionylated tRNA(Glu) restores fluorescence in proportion to the amount of misacylated tRNA(Glu). This cellular approach works well for both transient transfection and established stable HEK293 lines. It is rapid, straightforward, and well suited for high-throughput activity analysis under a wide range of physiological conditions. As a proof of concept, we apply this method to characterize the effect of human tRNA(Glu) isodecoders on mistranslation and discuss the implications of our findings.


Assuntos
Corantes Fluorescentes , Metionina/genética , Biossíntese de Proteínas , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...