Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567207

RESUMO

Banana bunchy top disease (BBTD), caused by the banana bunchy top virus (BBTV, genus Babuvirus), is the most destructive viral disease of banana and plantain (Musa spp.). The virus is transmitted persistently by the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae). While research efforts have focused on screening Musa genotypes for BBTD resistance, comparatively little work has been carried out to identify resistance to banana aphids. This study assessed 44 Musa germplasm of different A and B genome composition for the performance of banana aphids under semicontrolled environmental screenhouse conditions and in a field trial established in a BBTD endemic location. In the screenhouse, the AA diploid Calcutta 4 had the lowest apterous aphid density per plant (9.7 ± 4.6) compared with AAB triploid Waema, which had the highest aphid densities (395.6 ± 20.8). In the field, the highest apterous aphid density per plant (29.2 ± 6.7) occurred on the AAB triploid Batard and the lowest (0.4 ± 0.2) on the AA diploid Pisang Tongat. The AA diploid Tapo was highly susceptible to BBTD (100% infection) compared with the genotypes Balonkawe (ABB), PITA 21 (AAB), Calcutta 4 (AA), and Balbisiana Los Banos (BB), which remained uninfected. The Musa genotypes with apparent resistance to BBTD and least susceptibility to aphid population growth provide options for considering aphid and BBTD resistance in banana and plantain breeding programs.

2.
Crop Prot ; 150: 105810, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866731

RESUMO

Weed competition is the major biological stress affecting cassava production in smallholder farms in West and Central Africa, where yields are low compared with those in Asia and Latin America. Options for improved weed management are crucial in increasing productivity. Selected pre- and post-emergence herbicides, integrated with appropriate tillage and plant spacing, were tested in 96 sites in four locations in Nigeria, 24 in 2016 and 72 in 2017. Trials were split plots with six pre-emergence herbicides and no post-emergence treatment as main plots. Subplot treatments were four post-emergence herbicides, weeding with a motorized rotary weeder, short- and long-handled hoes, and no post-emergence weed control, i.e., regardless of pre-emergence treatments. Indaziflam-based treatments, irrespective of post-emergence treatment, and flumioxazin + pyroxasulfone applied pre-emergence followed by one weeding with a long-handled hoe provided >80% control of major broadleaf and grass weeds. Compared with herbicide use, farmer control practices (53%) were not efficient in controlling weeds. The highest root yield was produced where (1) s-metolachlor was combined with atrazine, and one weeding with a long-handled hoe or clethodim with lactofen, and (2) indaziflam + isoxaflutole was combined with glyphosate. An increase in root yield from 3.41 to 14.2 t ha-1 and from 3.0 to 11.99 t ha-1 was obtained where herbicides were used compared with farmers' practice and manual hoe weeding. Our results showed that integrating good agronomic practices with safe and effective use of appropriate herbicides can result in root yield >20 t ha-1. i.e., twice the national average root yield of 8-12 t ha-1, with >50% net profit. The use of appropriate herbicides can reduce the amount of manual labor required and improve livelihoods, specifically for women and children. Smallholder cassava farmers would require continuous training on the safe use and handling of herbicides to improve efficiency and prevent adverse effects on humans and the environment.

3.
Toxins (Basel) ; 10(5)2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735944

RESUMO

Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.


Assuntos
Aflatoxinas/análise , Aminoácidos/metabolismo , Aspergillus/metabolismo , Grão Comestível/química , Açúcares/metabolismo , Zea mays/química , Grão Comestível/microbiologia , Zea mays/microbiologia
5.
J Econ Entomol ; 102(2): 515-21, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19449630

RESUMO

Effectiveness of GF-120 (Dow Chemical) Fruit Fly Bait containing the insecticide spinosad in controlling mango-infesting fruit flies (Diptera: Tephritidae) was assessed by comparing treated orchards with untreated orchards. Twelve mango, Mangifera indica L., plantations located in six villages (two similar orchards per village: one orchard treated and orchard untreated) scattered in the Borgou department (northern Benin) were monitored weekly with fly traps, and the fruit was sampled twice for larval infestation at the beginning and in the middle of May in both 2006 and 2007. The two main mango fruit fly pests are Ceratitis cosyra (Walker) and Bactrocera invadens Drew, Tsuruta & White, an invasive species that recently spread throughout West Africa. In both the 2006 and 2007 seasons, C. cosyra had the earliest peak of abundance, and the difference between treated and untreated orchards, in terms of mean number of flies trapped per week and per trap, was significant only in 2007. B. invadens populations quickly increased with the onset of the rains, from mid-May onward, with no significant difference between treated and untreated orchards. In 2006 and 2007, the larval infestation by B. invadens was significantly lower in plots treated with GF-120 than in untreated control plots. GF-120 provided an 81% reduction in the number of pupae per kilogram of fruit after weekly applications for 7 wk in 2006 and an 89% reduction after 10 wk of weekly applications in 2007. The possibility of integrating GF120 bait sprays in an integrated pest management package is discussed in relation to market requirements.


Assuntos
Inseticidas/farmacologia , Macrolídeos/farmacologia , Mangifera/parasitologia , Tephritidae/efeitos dos fármacos , Animais , Benin , Combinação de Medicamentos , Controle de Insetos/métodos , Larva/efeitos dos fármacos , Tempo
6.
Exp Appl Acarol ; 41(3): 153-68, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17357822

RESUMO

Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen--which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.


Assuntos
Entomophthorales/patogenicidade , Tetranychidae/microbiologia , Animais , Entomophthorales/isolamento & purificação , Densidade Demográfica , Dinâmica Populacional , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...