RESUMO
Plant-based meat analogs require improvements in taste and texture to better replicate traditional meat. L-theanine and tannin, abundant in green tea, influence food taste and physicochemical properties. This study evaluated the quality characteristics of green tea extract (GE)-supplemented plant-based patties (PP) and the mechanisms affecting taste and texture. Green tea was extracted with water (GWE) or 70 % ethanol (GEE). GEE contained higher tannin and lower L-theanine levels than GWE. Both GWE and GEE reduced protein deterioration and lipid oxidation in PP throughout the 28-day storage period. PP with 1.0 % GEE (PP-GEE1.0) showed improved emulsion stability and texture due to non-covalent interactions including hydrophobic interaction and hydrogen bonds, and increased ß-sheet structures between tannin and pea protein. PP-GEE1.0 also had superior sensory characteristics due to an optimal balance of L-theanine and tannin. Overall, the incorporation of GE, particularly GEE significantly improved physicochemical properties, sensory quality, and storage stability of PP.
RESUMO
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.
RESUMO
Incorporation of structured liquid oil within plant-based patties can be achieved through the utilization of food-grade Pickering emulsion (PE). Therefore, the aim of this study was to evaluate the quality characteristics of PE and its application in plant-based patty. The PEs were formulated using sunflower oil (SO), polysaccharides and protein, and the specific ratios employed were as following: methylcellulose (MC) 2 % only (MP0); MC 1.5 % + pea protein isolate (PPI) 0.5 % (MP1); MC 1 % + PPI 1 % (MP2); xanthan gum (XG) 2 % only (XP0); XG 1.5 % + PPI 0.5 % (XP1); XG 1 % + PPI 1 % (XP2). MP0 and MP1 were unstable as PEs, whereas MP2 and XP groups (XP0, XP1, and XP2) exhibited stability as a PE. In addition, MP2 and all XP groups showed increased oil binding capacity, hydrophobic interaction, thermal stability, crystallization, rheological properties, and oxidative stability, compared to MP0 and MP1. In PE-applied plant-based patties, MP2 and all XP groups had significantly lower cooking loss and higher emulsion stability than SO. Particularly, MP2-employed plant-based patties exhibited significantly improved textural and sensory properties. Therefore, our data suggest that PEs with methylcellulose and pea protein isolate could be an effective replacement of plant oil in plant-based meat analogs.