Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 29(9): 2334-2346, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640860

RESUMO

Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Amplamente Neutralizantes
4.
J Telemed Telecare ; : 1357633X231194796, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37632124

RESUMO

The 2022 mpox outbreak in New York City posed challenges to rapidly scaling up treatment capacity. We describe a telehealth treatment model launched during this outbreak that facilitated healthcare provider treatment capacity, and was able to adhere to a Centers for Disease Control and Prevention (CDC)-sponsored expanded access investigational new drug (EA-IND) protocol for tecovirimat. Sixty-nine patients were evaluated and prescribed tecovirimat for mpox through telehealth visits at NYC Health + Hospitals/Bellevue and NYU Langone Health from June to August 2022. Thirty-two (46.4%) were previously diagnosed with HIV. Forty-four (63.8%) reported full recovery, with the remainder lost to follow-up. Most patients (n = 60, 87.0%) attended at least one follow-up visit (either in person or through telehealth) after starting treatment. We observed favorable treatment outcomes, with no serious adverse events, hospitalizations, or deaths related to mpox. While equitable access to telehealth remains a limitation that needs to be addressed, this telehealth model enabled a rapid scale-up of tecovirimat prescription during the mpox outbreak, and should be considered as an important tool used to respond to future infectious disease outbreaks.

5.
NPJ Vaccines ; 8(1): 98, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433788

RESUMO

As part of a multicenter study evaluating homologous and heterologous COVID-19 booster vaccines, we assessed the magnitude, breadth, and short-term durability of binding and pseudovirus-neutralizing antibody (PsVNA) responses following a single booster dose of NVX-CoV2373 in adults primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2 vaccines. NVX-CoV2373 as a heterologous booster was immunogenic and associated with no safety concerns through Day 91. Fold-rises in PsVNA titers from baseline (Day 1) to Day 29 were highest for prototypic D614G variant and lowest for more recent Omicron sub-lineages BQ.1.1 and XBB.1. Peak humoral responses against all SARS-CoV-2 variants were lower in those primed with Ad26.COV2.S than with mRNA vaccines. Prior SARS CoV-2 infection was associated with substantially higher baseline PsVNA titers, which remained elevated relative to previously uninfected participants through Day 91. These data support the use of heterologous protein-based booster vaccines as an acceptable alternative to mRNA or adenoviral-based COVID-19 booster vaccines. This trial was conducted under ClinicalTrials.gov: NCT04889209.

8.
Res Sq ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205592

RESUMO

Vaccine protection against COVID-19 wanes over time and has been impacted by the emergence of new variants with increasing escape of neutralization. The COVID-19 Variant Immunologic Landscape (COVAIL) randomized clinical trial (clinicaltrials.gov NCT05289037) compares the breadth, magnitude and durability of antibody responses induced by a second COVID-19 vaccine boost with mRNA (Moderna mRNA-1273 and Pfizer-BioNTech BNT162b2), or adjuvanted recombinant protein (Sanofi CoV2 preS DTM-AS03) monovalent or bivalent vaccine candidates targeting ancestral and variant SARS-CoV-2 spike antigens (Beta, Delta and Omicron BA.1). We found that boosting with a variant strain is not associated with loss in neutralization against the ancestral strain. However, while variant vaccines compared to the prototype/wildtype vaccines demonstrated higher neutralizing activity against Omicron BA.1 and BA.4/5 subvariants for up to 3 months after vaccination, neutralizing activity was lower for more recent Omicron subvariants. Our study, incorporating both antigenic distances and serologic landscapes, can provide a framework for objectively guiding decisions for future vaccine updates.

9.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034641

RESUMO

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent SARS-CoV-2 mRNA vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wildtype spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.

10.
Clin Infect Dis ; 77(4): 560-564, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37036397

RESUMO

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wild-type spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Vacinas Combinadas , Anticorpos Antivirais
11.
Clin Infect Dis ; 76(4): 753-759, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36131321

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic and associated increase in family care responsibilities resulted in unsustainable personal and professional workloads for infectious diseases (ID) faculty on the front lines. This was especially true for early-stage faculty (ESF), many of whom had caregiving responsibilities. In addition, female faculty, underrepresented in medicine and science faculty and particularly ESF, experienced marked declines in research productivity, which significantly impacts career trajectories. When combined with staffing shortages due to an aging workforce and suboptimal recruitment and retention in ID, these work-life imbalances have brought the field to an inflection point. We propose actionable recommendations and call on ID leaders to act to close the gender, racial, and ethnic gaps to improve the recruitment, retention, and advancement of ESF in ID. By investing in systemic change to make the ID workforce more equitable, we can embody the shared ideals of diversity and inclusion and prepare for the next pandemic.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Feminino , Grupos Minoritários , Pandemias , Docentes de Medicina
12.
medRxiv ; 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35898343

RESUMO

Background: Protection from SARS-CoV-2 vaccines wanes over time and is compounded by emerging variants including Omicron subvariants. This study evaluated safety and immunogenicity of SARS-CoV-2 variant vaccines. Methods: This phase 2 open-label, randomized trial enrolled healthy adults previously vaccinated with a SARS-CoV-2 primary series and a single boost. Eligible participants were randomized to one of six Moderna COVID19 mRNA vaccine arms (50µg dose): Prototype (mRNA-1273), Omicron BA.1+Beta (1 or 2 doses), Omicron BA.1+Delta, Omicron BA.1 monovalent, and Omicron BA.1+Prototype. Neutralization antibody titers (ID 50 ) were assessed for D614G, Delta, Beta and Omicron BA.1 variants and Omicron BA.2.12.1 and BA.4/BA.5 subvariants 15 days after vaccination. Results: From March 30 to May 6, 2022, 597 participants were randomized and vaccinated. Median age was 53 years, and 20% had a prior SARS-CoV-2 infection. All vaccines were safe and well-tolerated. Day 15 geometric mean titers (GMT) against D614G were similar across arms and ages, and higher with prior infection. For uninfected participants, Day 15 Omicron BA.1 GMTs were similar across Omicron-containing vaccine arms (3724-4561) and higher than Prototype (1,997 [95%CI:1,482-2,692]). The Omicron BA.1 monovalent and Omicron BA.1+Prototype vaccines induced a geometric mean ratio (GMR) to Prototype for Omicron BA.1 of 2.03 (97.5%CI:1.37-3.00) and 1.56 (97.5%CI:1.06-2.31), respectively. A subset of samples from uninfected participants in four arms were also tested in a different laboratory at Day 15 for neutralizing antibody titers to D614G and Omicron subvariants BA.1, BA.2.12.2 and BA.4/BA.5. Omicron BA.4/BA.5 GMTs were approximately one third BA.1 GMTs (Prototype 517 [95%CI:324-826] vs. 1503 [95%CI:949-2381]; Omicron BA.1+Beta 628 [95%CI:367-1,074] vs. 2125 [95%CI:1139-3965]; Omicron BA.1+Delta 765 [95%CI:443-1,322] vs. 2242 [95%CI:1218-4128] and Omicron BA.1+Prototype 635 [95%CI:447-903] vs. 1972 [95%CI:1337-2907). Conclusions: Higher Omicron BA.1 titers were observed with Omicron-containing vaccines compared to Prototype vaccine and titers against Omicron BA.4/BA.5 were lower than against BA.1 for all candidate vaccines. Clinicaltrialsgov: NCT05289037.

13.
Cell Rep Med ; 3(7): 100679, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35798000

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. We assess the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. All prime-boost combinations substantially increase the neutralization titers to Omicron, although the boosted titers decline rapidly within 2 months from the peak response compared with boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers are substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared with homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generates nearly equivalent neutralizing activity against Omicron sublineages BA.1, BA.2, and BA.3 but modestly reduced neutralizing activity against BA.2.12.1 and BA.4/BA.5 compared with BA.1. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2. This trial was conducted under ClincalTrials.gov: NCT04889209.


Assuntos
COVID-19 , Vacinas Virais , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , RNA Mensageiro , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
14.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35150571

RESUMO

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Cinética , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Carga Viral
15.
Clin Infect Dis ; 75(1): e1180-e1183, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35152299

RESUMO

Coronavirus disease 2019 symptom definitions rarely include symptom severity. We collected daily nasal swab samples and symptom diaries from contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case patients. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (95% confidence interval [CI], 52.9%-66.7%) to 31.5% (95% CI, 25.7%- 38.0%) but increased specificity from 77.5% (95% CI, 75.3%-79.5%) to 93.8% (95% CI, 92.7%-94.8%).


Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Estudos Longitudinais , SARS-CoV-2
16.
JAMA Netw Open ; 5(1): e2142796, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35006245

RESUMO

Importance: The SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development. Objective: To characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity. Design, Setting, and Participants: This prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days. Exposure: Laboratory-confirmed SARS-CoV-2 infection. Main Outcomes and Measures: The observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity. Results: A total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain). Conclusions and Relevance: This cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.


Assuntos
COVID-19/virologia , RNA Viral , SARS-CoV-2 , Índice de Gravidade de Doença , Carga Viral , Eliminação de Partículas Virais , Adulto , COVID-19/complicações , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Testes Sorológicos
17.
N Engl J Med ; 386(11): 1046-1057, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35081293

RESUMO

BACKGROUND: Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. METHODS: In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 µg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 µg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. RESULTS: Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. CONCLUSIONS: Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Ad26COVS1/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacinas contra COVID-19/efeitos adversos , Feminino , Humanos , Imunização Secundária/efeitos adversos , Injeções Intramusculares/efeitos adversos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia
18.
Viruses ; 13(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34960706

RESUMO

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Assuntos
Antivirais/farmacologia , Atovaquona/farmacologia , Berberina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células Epiteliais Alveolares , Animais , Berberina/química , Proliferação de Células/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Proguanil/farmacologia , Células Vero , Vírion/efeitos dos fármacos
20.
medRxiv ; 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34671773

RESUMO

Background: While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods: In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-µg, Janssen Ad26.COV2.S 5×1010 virus particles, or Pfizer-BioNTech BNT162b2 30-µg; nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results: 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 153 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations; homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion: Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...