Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233890

RESUMO

Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent mechanical properties, and good formability. Paradoxically, the self-protection effect resulting from passivation turns into the main disadvantage, which is unacceptable interfacial contact resistance. The aim of this study was to test a number of possible stainless steels in a simulated fuel cell environment, especially those alloyed with boron and manganese, which were found to improve the contact resistance properties of stainless steels. The primary focus of the study is to determine the corrosion resistance of the individual materials tested. Electrochemical tests and contact resistance measurements were performed following the DOE requirements. Manganese-alloyed LDX stainless steel achieved the best results in the electrochemical tests; the worst were achieved by boron-containing steels. Boron-containing stainless steels suffered from localized corrosion resulting from chromium-rich boride formation. All steels tested exceeded the DOE limit in the contact resistance measurement, with 316L reaching the lowest values.

2.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057355

RESUMO

Sixteen localities were involved in a broad study, resulting in the classification of the indoor corrosivity of metals considered in the ISO 11844 standard, especially lead. Recently, lead has been added to the standard as a metal specifically sensitive to volatile organic compounds such as acetic acid. Data on one-year exposure in museum depositories and exhibition spaces, archives, libraries, and churches show that the currently valid lead corrosivity categories are not correctly defined. The obtained data allowed for the proposal of new realistic ranges of indoor corrosivity categories for lead. The exposure program was also used to validate techniques for determining the corrosion degradation of metal coupons. Mass increase and mass loss techniques were supplemented with the galvanostatic reduction technique and the measurement of color changes. The study identified the limitations of the mass gain method. Not only is the galvanostatic reduction technique applicable for silver and copper coupons, but the build-up of reducible lead corrosion products depends on air corrosivity. CIELab color-change measurement has proven to be a simple and easy-to-apply method for monitoring the corrosivity of indoor atmospheres with regard to lead. A more reliable response is provided by the determination of color change after 3 months of exposure rather than after one year.

3.
Materials (Basel) ; 16(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36614565

RESUMO

Indoors, volatile organic acids can play an important role in the degradation process of many materials. Considering this fact, metal corrosion coupons of copper, silver, lead, and zinc were exposed to different climatic conditions of 18 locations for 3, 12, and 30 months, and their corrosion rates were evaluated based on mass loss, as recommended by the ISO 11844 standard. The corrosion rates were compared with in situ colorimetric measurements to validate the colorimetry as a simple tool for estimating the corrosivity of an environment. The results have shown good correlation between the methods for two metals: silver and lead, confirming the possibility of non-destructive monitoring of their corrosion by measurement of color changes.

4.
Materials (Basel) ; 14(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065611

RESUMO

The aim of this review is to summarize the possibilities of replacing graphite bipolar plates in fuel-cells. The review is mostly focused on metallic bipolar plates, which benefit from many properties required for fuel cells, viz. good mechanical properties, thermal and electrical conductivity, availability, and others. The main disadvantage of metals is that their corrosion resistance in the fuel-cell environment originates from the formation of a passive layer, which significantly increases interfacial contact resistance. Suitable coating systems prepared by a proper deposition method are eventually able to compensate for this disadvantage and make the replacement of graphite bipolar plates possible. This review compares coatings, materials, and deposition methods based on electrochemical measurements and contact resistance properties with respect to achieving appropriate parameters established by the DOE as objectives for 2020. An extraordinary number of studies have been performed, but only a minority of them provided promising results. One of these is the nanocrystalline ß-Nb2N coating on AISI 430, prepared by the disproportionation reaction of Nb(IV) in molten salt, which satisfied the DOE 2020 objectives in terms of corrosion resistance and interfacial contact resistance. From other studies, TiN, CrN, NbC, TiC, or amorphous carbon-based coatings seem to be promising. This paper is novel in extracting important aspects for future studies and methods for testing the properties of metallic materials and factors affecting monitoring characteristics and parameters.

5.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322657

RESUMO

Restoration treatment, specimen preparation or mass loss measurements on coupons made of lead require a reliable process of dissolution of corrosion products. In this study, several types of model corrosion products with compositions representative of those found on real objects were prepared and characterized. Ten solutions were then thoroughly tested in interval cleaning experiments, regarding the efficiency of removal of the corrosion products, corrosivity towards bare lead, and remnants left on the surface. The solution recommended in the current version of the ISO 8470 standard was found to be improper for the cleaning of both historical artefacts and corrosion coupons due to its inability to remove sulfide corrosion products and the risk of surface contamination and staining. A solution of 20% hydrochloric acid is the best choice for the preparation of lead coupons before exposure or for evaluation of mass loss of exposed samples because its somewhat higher corrosivity towards metallic lead is tolerable for these applications. Rochelle salt solution was found to be optimal for the cleaning of historical artefacts free of sulfide corrosion products due to the lowest corrosivity. None of these alternative solutions leave remnants on the surface and they are efficient at laboratory temperature.

6.
Materials (Basel) ; 12(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470625

RESUMO

This paper studies the effect of water as an oxidation agent and also of oxygen on zinc corrosion kinetics in active state in concrete, using high-sensitivity electrical resistance sensors. It was proven that zinc corrosion in active state is strongly affected by the presence of water at its surface. Zinc corrosion in real concrete in the absence of water can be misinterpreted as salt passivity. The presence of oxygen results in an increase of zinc corrosion rate, however at pH 12.6, passivity can occur. It was verified that corrosion products consisting primarily of Ca[Zn(OH)3]2·2H2O cannot effectively passivate zinc surface in concrete, even after 1800 h of exposure and zinc, or hot-dip galvanized steel can corrode at an unacceptable corrosion rate (more than 4 µm·a-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...