Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 261(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37418158

RESUMO

In this study, the results of the first detection of callose within the ovules of the representatives of the family Crassulaceae are presented. This study was carried out on three species of the genus Sedum. Data analysis showed differences in the callose deposition pattern between Sedum hispanicum and Sedum ser. Rupestria species during megasporogenesis. Callose was present mostly in the transversal walls of dyads and tetrads in S. hispanicum. Furthermore, a complete loss of callose from the cell walls of the linear tetrad and a gradual and simultaneous deposition of callose within the nucellus of S. hispanicum were observed. The findings of this study showed the presence of hypostase with callose in the ovules of S. hispanicum, which is not common in other angiosperms. The remaining species tested in this study-Sedum sediforme and Sedum rupestre-showed a typical, well-known callose deposition pattern for plants with the monospore type of megasporogenesis and the Polygonum type of embryo sac. The functional megaspore (FM) in all studied species was located most chalazally. FM is a mononuclear cell, which wall is callose-free in the chalazal pole. The study presents the causes of different patterns of callose deposition within Sedum and their relationship with the systematic position of the study species. Moreover, embryological studies present an argument for excluding callose as a substance that forms an electron-dense material near the plasmodesmata in megaspores of S. hispanicum. This research expands the knowledge about the embryological processes of succulent plants from the family Crassulaceae.


Assuntos
Crassulaceae , Glucanos , Sedum , Sedum/ultraestrutura , Crassulaceae/ultraestrutura , Gametogênese Vegetal , Plasmodesmos/ultraestrutura
2.
Postepy Biochem ; 68(1): 38-45, 2022 03 31.
Artigo em Polonês | MEDLINE | ID: mdl-35569045

RESUMO

The suspensor in the majority of angiosperms is an evolutionally conserved embryonic organ functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth regulators flux. In this article the present knowledge on the embryo-suspensor ultrastructure and function in representatives of Crassulaceae genera: Sedum, Jovibarba, Sempervivum, Aeonium, Monanthes, Aichryson and Echeveria. The role of the suspensor in the transport of nutrients from the tissues of the ovule to the proper embryo is confirmed by the structure of the basal cell, especially the nature of the micropylar part of its wall, the "transfer wall". The basal suspensor cell is a site of intense metabolic activity. The special attention is paid to the plasmodesmata. The correlation between types of suspensors and structure of plasmodesmata was investigated. Final conclusions are given and the presented data summarized.


Assuntos
Crassulaceae , Sedum , Crassulaceae/ultraestrutura , Desenvolvimento Embrionário , Plasmodesmos/ultraestrutura , Sedum/ultraestrutura , Sementes/metabolismo
3.
Plants (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34834736

RESUMO

Crepidium is a large genus of mainly pantropical orchids. The lips of its flowers are upwardly directed and do not serve as landing platforms for pollinators. This role is assumed by the dorsal sepal and/or gynostemium. Information about the pollination and floral morphology of this genus is scarce. To date, no papers have been published on these topics. Field observations have revealed that the flowers are visited by small flies, midges, fruit flies, other small dipterans, ants, spiders, and mites. Preliminary observations revealed at least two forms of small liquid droplets secreted on the lip surface of Crepidium species: simple secretions from epidermal cells, and cell sap released upon the rupturing of raphide-producing cells. Further research revealed that this was the first time liquid secretion was recorded in this genus. Floral secretions were subjected to sequential organic solvent extraction and gas chromatography-mass spectrometry (GC-MS). Floral parts were investigated by means of scanning (SEM) and transmission electron microscopy (TEM), and histochemical tests. The presence of liquid droplets on the lip of Crepidium, the presence of a food reward, and the sequence of raphide development are reported here for the first time.

4.
Plant Cell Rep ; 40(4): 637-665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33544186

RESUMO

KEY MESSAGE: Macroscopic, ultrastructural, and molecular features-like a ball shape, the presence of starch granules, and the up-regulation of genes involved in carbohydrate metabolism and secondary metabolite biosynthesis-distinguish PT regions within a callus. The modification of the mass of pluripotent cells into de novo shoot bud regeneration is highly relevant to developmental biology and for agriculture and biotechnology. This study deals with protuberances (PT), structures that appear during the organogenic long-term culturing of callus (OC) in kiwifruit. These ball-shaped regions of callus might be considered the first morphological sign of the subsequent shoot bud development. Sections of PT show the regular arrangement of some cells, especially on the surface, in contrast to the regions of OC beyond the PT. The cells of OC possess chloroplasts; however, starch granules were observed only in PTs' plastids. Transcriptomic data revealed unique gene expression for each kind of sample: OC, PT, and PT with visible shoot buds (PT-SH). Higher expression of the gene involved in lipid (glycerol-3-phosphate acyltransferase 5 [GPAT5]), carbohydrate (granule-bound starch synthase 1 [GBSS1]), and secondary metabolite (beta-glucosidase 45 [BGL45]) pathways were detected in PT and could be proposed as the markers of these structures. The up-regulation of the regulatory associated protein of TOR (RAPTOR1) was found in PT-SH. The highest expression of the actinidain gene in leaves from two-year-old regenerated plants suggests that the synthesis of this protein takes place in fully developed organs. The findings indicate that PT and PT-SH are specific structures within OC but have more features in common with callus tissue than with organs.


Assuntos
Actinidia/citologia , Actinidia/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Microscopia Eletrônica de Varredura , Células Vegetais/ultraestrutura , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Técnicas de Cultura de Tecidos/métodos
5.
Protoplasma ; 258(3): 529-546, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33188606

RESUMO

This article describes the development of female gametophyte in Sedum rupestre L. New embryological information about the processes of megasporogenesis and megagametogenesis provided in this paper expand the current knowledge about the embryology of the studied species. S. rupestre is characterized by monosporic megasporogenesis and the formation of Polygonum-type embryo sac. The process of megasporogenesis is initiated by one megaspore mother cell, resulting in the formation of a triad of cells after meiosis and cytokinesis. The functional megaspore, which is located chalazally, is a mononuclear cell present next to the megaspore in the centre of the triad. Only one of the two non-functional cells of the triad is binucleate, which occur at the micropylar pole. In this paper, we explain the functional ultrastructure of the female gametophytic cells in S. rupestre. Initially, the cytoplasm of the gametophytic cells does not differ from each other; however, during differentiation, the cells reveal different morphologies. The antipodals and the synergids gradually become organelle-rich and metabolically active. The antipodal cells participate in the absorption and transport of nutrients from the nucellar cells towards the megagametophyte. Their ultrastructure shows the presence of plasmodesmata with electron-dense material, which is characteristic of Crassulaceae, and wall ingrowths in the outer walls. The ultrastructure of synergid cells is characterized by the presence of filiform apparatus and cytoplasm with active dictyosomes, abundant profiles of endoplasmic reticulum and numerous vesicles, which agrees with their main function-the secretion of pollen tube attractants. Reported data can be used to resolve the current taxonomic problems within the genus Sedum ser. Rupestria.


Assuntos
Células Germinativas Vegetais/ultraestrutura , Histocitoquímica/métodos
6.
Plants (Basel) ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138356

RESUMO

The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.

7.
Protoplasma ; 256(2): 537-553, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30324403

RESUMO

Available documentation about the development of the female gametophyte of Crassulaceae is very limited. The aim of this study was to extend the embryological knowledge of Crassulaceae by analysing the development of the embryo sac in Sedum sediforme. Transmission electron microscopy and light microscopy including Nomarski optics (DIC) were used to observe individual stages of female gametophyte development. Cytochemical staining enabled detection of lipids, insoluble polysaccharides and proteins in gametophyte cells during their formation. Their increased accumulation was observed during nucellar cell and unfunctional cell degeneration in the embryo sac at the coenocytic and cellular stages (megagametogenesis). The female gametophyte develops in anatropous, bitegmic and crassinucellate ovules. The mature embryo sac is built of seven cells but after antipodes degeneration it is formed by the egg apparatus and a central cell. The monosporic Polygonum type was observed. One megaspore mother cell (MMC) formed three cells after meiosis. A triad was formed from a functional megaspore (placed chalazally), one uninucleate megaspore and a binucleate cell located at the micropylar end. Plasmodesmata with adhering electron-dense dome were noticed in walls of the coenocytic embryo sac and in the outer walls of ephemeral antipodes. Moreover, similar to synergids, antipodes form wall ingrowths. Here, we report new structural features of the antipodal cells (the presence of plasmodesmata with an electron-dense dome) which have not been described before. This new structural observation indicates that these cells participate in substance transport and that this process can probably be additionally regulated.


Assuntos
Crassulaceae , Células Germinativas Vegetais/crescimento & desenvolvimento , Animais , Crassulaceae/anatomia & histologia , Crassulaceae/química , Crassulaceae/ultraestrutura , Feminino
8.
Ann Bot ; 122(4): 513-539, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29982367

RESUMO

Background and aims: In the Brassicaceae family, apomictic development is characteristic of the genus Boechera. Hybridization, polyploidy and environmental adaptation that arose during the evolution of Boechera may serve as (epi)genetic regulators of apomictic initiation in this genus. Here we focus on Boechera stricta, a predominantly diploid species that reproduces sexually. However, apomictic development in this species has been reported in several studies, indicating non-obligate sexuality. Methods: A progressive investigation of flower development was conducted using three accessions to assess the reproductive system of B. stricta. We employed molecular and cyto-embryological identification using histochemistry, transmission electron microscopy and Nomarski and epifluorescence microscopy. Key Results: Data from internal transcribed spacer (ITS) and chloroplast haplotype sequencing, in addition to microsatellite variation, confirmed the B. stricta genotype for all lines. Embryological data indicated irregularities in sexual reproduction manifested by heterochronic ovule development, longevity of meiocyte and dyad stages, diverse callose accumulation during meiocyte-to-gametophyte development, and the formation of triads and tetrads in several patterns. The arabinogalactan-related sugar epitope recognized by JIM13 immunolocalized to one or more megaspores. Furthermore, pollen sterility and a high frequency of seed abortion appeared to accompany reproduction of the accession ES512, along with the initiation of parthenogenesis. Data from flow cytometric screening revealed both sexual and apomictic seed formation. Conclusion: These results imply that B. stricta is a species with an underlying ability to initiate apomixis, at least with respect to the lines examined here. The existence of apomixis in an otherwise diploid sexual B. stricta may provide the genomic building blocks for establishing highly penetrant apomictic diploids and hybrid relatives. Our findings demonstrate that apomixis per se is a variable trait upon which natural selection could act.


Assuntos
Apomixia/genética , Brassicaceae/genética , Diploide , Genoma de Planta/genética , Brassicaceae/fisiologia , Genótipo , Hibridização Genética , Repetições de Microssatélites/genética , Óvulo Vegetal/genética , Óvulo Vegetal/fisiologia , Fenótipo , Pólen , Poliploidia , Sementes/genética , Sementes/fisiologia , Seleção Genética
9.
Protoplasma ; 255(1): 247-261, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28840347

RESUMO

Until now, development of the female gametophyte has been investigated only in some species of Crassulaceae using a light microscope. To the best of our knowledge, this is the first report that describes the process of megasporogenesis and megagametogenesis in Crassulaceae in detail. To achieve this, we performed embryological studies on Sedum hispanicum L. (Crassulaceae). Cytochemical analysis detected the presence of proteins, lipids, and insoluble polysaccharides in individual cells of the gametophyte. The development of the embryo sac conforms to the monosporic or Polygonum-type in anatropous, crassinucellate, and bitegmic ovules. One megaspore mother cell initiates the process of megasporogenesis. Prior to the first meiotic division, the nucleus is centrally located within the meiocyte. Other organelles seem to be distributed evenly over the micropylar and chalazal parts during the development. Most storage reserves detected during megasporogenesis were observed in the megaspore mother cell. Three mitotic divisions within the chalazal functional megaspore resulted in the enlargement of the eight-nucleated embryo sac. In the seven-celled gametophyte, three chalazally located antipodes degenerated. A mature embryo sac was formed by the egg apparatus and central cell. When the antipodes degenerated, both synergids became organelle-rich and more active. The concentration of lipid droplets, starch grains, and proteins increased during megagametogenesis in the growing gametophyte. In the cellular embryo sac, the central cell can be distinguished by its largest accumulation. Our data confirm the hypothesis that plasmodesmata with electron-dense dome are formed during development of the female gametophyte in S. hispanicum and not just during the stages of embryogenesis. We observed these structures in megaspores and coenocytic embryo sac walls. Functions of observed plasmodesmata are discussed.


Assuntos
Sedum/crescimento & desenvolvimento , Sedum/ultraestrutura , Flores/crescimento & desenvolvimento , Gametogênese Vegetal , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/ultraestrutura , Plasmodesmos/ultraestrutura
10.
Protoplasma ; 255(2): 485-499, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28913668

RESUMO

Two representatives of section Lepidorhiza, previously sometimes considered conspecific, Bulbophyllum levanae and Bulbophyllum nymphopolitanum, demonstrated both similarities and differences in floral features. There were significant differences in the length of sepals and micromorphological features of the labellum. In both species, osmophores are located on the extended apices of sepals and possibly on petals. An abundance of proteins in tepals is probably associated with the unpleasant scent of the flowers, whereas the thin wax layers on the epidermis are probably involved in the maintenance of the brilliance of floral tepals, which strongly attracts flies. In all tepals of both species, we noted the presence of dihydroxyphenolic globules in the cytoplasm after staining with FeCl3. Comparison with ultrastructure results revealed that they were associated with plastids containing plastoglobuli. The most remarkable feature was the presence of a prominent periplasmic space in the epidermal cells of both investigated species. Furthermore, in the labellum of B. levanae, the cuticle contained microchannels. The combination of periplasmic space and microchannels has not previously been recorded.


Assuntos
Flores/anatomia & histologia , Orchidaceae/anatomia & histologia , Flores/citologia , Flores/ultraestrutura , Orchidaceae/citologia , Orchidaceae/ultraestrutura
11.
Protoplasma ; 254(6): 2287-2294, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28508157

RESUMO

Members of the genera Hieracium and Pilosella are model plants that are used to study the mechanisms of apomixis. In order to have a proper understanding of apomixis, knowledge about the relationship between the maternal tissue and the gametophyte is needed. In the genus Pilosella, previous authors have described the specific process of the "liquefaction" of the integument cells that surround the embryo sac. However, these observations were based on data only at the light microscopy level. The main aim of our paper was to investigate the changes in the integument cells at the ultrastructural level in Pilosella officinarum and Hieracium alpinum. We found that the integument peri-endothelial zone in both species consisted of mucilage cells. The mucilage was deposited as a thick layer between the plasma membrane and the cell wall. The mucilage pushed the protoplast to the centre of the cell, and cytoplasmic bridges connected the protoplast to the plasmodesmata through the mucilage layers. Moreover, an elongation of the plasmodesmata was observed in the mucilage cells. The protoplasts had an irregular shape and were finally degenerated. After the cell wall breakdown of the mucilage cells, lysigenous cavities that were filled with mucilage were formed.


Assuntos
Apomixia , Asteraceae/ultraestrutura , Sementes/ultraestrutura , Asteraceae/fisiologia , Parede Celular/ultraestrutura , Citoplasma/ultraestrutura , Microscopia Eletrônica de Transmissão , Protoplastos/fisiologia , Protoplastos/ultraestrutura , Sementes/fisiologia
12.
Protoplasma ; 254(3): 1431-1449, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27798718

RESUMO

Flowers of Bulbophyllum weberi and B. cumingii are characterized by fly-pollinated features. The secretory activity was described in dorsal sepals in both species (putative osmophores), petals in B. weberi (possible osmophores) and adaxial surface of lips in both species. In the cells of dorsal sepals and petals of B. weberi proteins, dihydroxyphenols, lipids and starch grains were detected, in lateral sepals-lipids. Whereas in dorsal sepal of B. cumingii only lipids and starch grains were noted, in lateral sepals-proteins and dihydroxyphenols and in petals-proteins and starch grains. The lips in both species differed histochemically and ultrastructurally. The epidermal cells of lip groove in B. weberi contained lipids, proteins, starch grains in cytoplasm, dihydroxyphenols in vacuoles and pectic acids/mucilage on surface. Whereas in B. cumingii-few lipids, starch grains, no proteins, no dihydroxyphenols and no mucilage were noted. Ultrastructurally, in B. weberi, the secretory material was present on surface and vesicles building into plasmalemma, while in B. cumingii-cell wall ingrowths and microchannels in cuticle. The osmiophilic irregular materials and globular, osmiophilic globules in B. weberi are probably tannin-like materials. For the first time, we described the cell wall ingrowths in Bulbophyllum species: in lip of B. cumingii and petals of B. weberi.


Assuntos
Flores/anatomia & histologia , Flores/ultraestrutura , Orchidaceae/anatomia & histologia , Orchidaceae/classificação , Cetonas/química , Lipídeos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Odorantes/análise , Fenóis/química , Polinização/fisiologia , Amido/química
13.
Planta ; 245(3): 491-505, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888360

RESUMO

MAIN CONCLUSION: Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted;


Assuntos
Sedum/embriologia , Sementes/metabolismo , Comunicação Celular , Endosperma/citologia , Fluorescência , Corantes Fluorescentes/metabolismo , Pirenos/metabolismo , Sedum/citologia , Sementes/citologia , Coloração e Rotulagem , Ácidos Sulfônicos/metabolismo
14.
Front Plant Sci ; 7: 1179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540390

RESUMO

Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of [Formula: see text]/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very efficient antioxidant protection (in which glucosinolates might play a specific role) and a fine tuning of hormonal signaling to suppress the cell death program directed by jasmonate pathway.

15.
Protoplasma ; 252(5): 1325-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25652809

RESUMO

With the exception of the sunflower, little information concerning the micropyle ultrastructure of the family Asteraceae is available. The aim of our study was to compare the micropyle structure in amphimictic and apomictic dandelions. Ultrastructural studies using buds and flowers during anthesis have been done on the micropyle of the sexual and apomictic Taraxacum. In all of the species that were examined, the micropylar canal was completely filled with ovule transmitting tissue and the matrix that was produced by these cells. The ovule transmitting tissue was connected to the ovarian transmitting tissue. The micropyle was asymmetrical because the integument epidermis that forms the transmitting tissue was only on the funicular side. There was a cuticle between the obturator cells and epidermal cells on the other side of integument. The micropylar transmitting tissue cells and theirs matrix reached the synergid apex. The cytoplasm of the transmitting tissue cells was especially rich in rough endoplasmic reticulum (ER), dictyosomes, and mitochondria. No major differences were detected between the micropyle structure of the amphimictic and apomictic species; thus, a structural reduction of obturator does not exist. The ovule transmitting tissue is still active in apomictic dandelions despite the presence of the embryo and endosperm. Differences and similarities between the micropyle structure in the Asteraceae that have been studied to date are discussed.


Assuntos
Tubo Polínico/ultraestrutura , Taraxacum/ultraestrutura , Endosperma/ultraestrutura , Epiderme Vegetal/ultraestrutura
16.
Protoplasma ; 252(2): 477-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25172434

RESUMO

This work demonstrated how reactive oxygen species (ROS) are involved in the regulation of rhizogenesis from hypocotyls of Mesembryanthemum crystallinum L. cultured on a medium containing 1-naphthaleneacetic acid (NAA). The increase of NADPH oxidase activity was correlated with an increase of hydrogen peroxide (H2O2) content and induction of mitotic activity in vascular cylinder cells, leading to root formation from cultured hypocotyls. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, inhibited H2O2 production and blocked rhizogenesis. Ultrastructural studies revealed differences in H2O2 localization between the vascular cylinder cells and cortex parenchyma cells of cultured explants. We suggest that NADPH oxidase is responsible for H2O2 level regulation in vascular cylinder cells, while peroxidase (POD) participates in H2O2 level regulation in cortex cells. Blue formazan (NBT) precipitates indicating superoxide radical (O2 (•-)) accumulation were localized within the vascular cylinder cells during the early stages of rhizogenesis and at the tip of root primordia, as well as in the distal and middle parts of newly formed organs. 3,3'-diaminobenzidine (DAB) staining of H2O2 was more intense in vascular bundle cells and in cortex cells. In newly formed roots, H2O2 was localized in vascular tissue. Adding DPI to the medium led to a decrease in the intensity of NBT and DAB staining in cultured explants. Accumulation of O2 (•-) was then limited to epidermis cells, while H2O2 was accumulated only in vascular tissue. These results indicate that O2 (•-) is engaged in processes of rhizogenesis induction involving division of competent cells, while H2O2 is engaged in developmental processes mainly involving cell growth.


Assuntos
Mesembryanthemum/enzimologia , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rizoma/enzimologia , Células Cultivadas , Mesembryanthemum/citologia , Mesembryanthemum/crescimento & desenvolvimento , Estresse Oxidativo , Transporte Proteico , Rizoma/crescimento & desenvolvimento , Rizoma/ultraestrutura
17.
Protoplasma ; 251(6): 1449-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24770880

RESUMO

Turions, which are modified shoot apices, are vegetative, dormant overwintering organs produced by perennial aquatic plants. In this study, the turion cytochemistry and ultrastructure of Aldrovanda vesiculosa, Utricularia vulgaris and U. stygia were compared with particular emphasis placed on storage substances. These three aquatic, rootless carnivorous plant species were studied at the end of their winter dormancy. At this stage, the turions of all species had starch as their main storage material. In contrast with A. vesiculosa, Utricularia turions were rich in protein storage vacuoles, and proteins were also accumulated as crystalline inclusions in the nuclei. All examined species accumulated lipid droplets in cells of epidermal glands.


Assuntos
Organismos Aquáticos/citologia , Organismos Aquáticos/ultraestrutura , Droseraceae/ultraestrutura , Histocitoquímica/métodos , Lamiaceae/ultraestrutura , Brotos de Planta/citologia , Brotos de Planta/ultraestrutura , Carnivoridade , Droseraceae/citologia , Lamiaceae/citologia , Brotos de Planta/anatomia & histologia
18.
Protoplasma ; 250(6): 1369-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23779214

RESUMO

Chalazal endosperm haustorium in Rhinanthus serotinus consists of a single large binucleate cell. It originates from the primary endosperm cell dividing transversely into two unequal cells: a smaller micropylar cell and a larger chalazal cell. The chalazal cell undergoes a single mitotic division, then lengthens significantly during development and functions as a chalazal endosperm haustorium. In this paper, immunofluorescent techniques, rhodamine phalloidin assay, and electron microscopy were used to examine the actin and tubulin cytoskeleton during the development of the chalazal haustorium. During the differentiation stage, numerous longitudinally oriented bundles of microfilaments ran along the axis of transvacuolar strands in haustorium. Microtubules formed intensely fluorescent areas near the nuclear envelope and also formed radial perinuclear microtubule arrays. In the fully differentiated haustorium cell, the actin cytoskeleton formed dense clusters of microfilaments on the chalazal and micropylar poles of the haustorium. Numerous microfilament bundles occurred near wall ingrowths on the chalazal wall. There were numerous clusters of microfilaments and microtubules around the huge lobed polytenic haustorial nuclei. The microfilaments were oriented longitudinally to the long axis of the haustorium cell and surrounded both nuclei. The microtubules formed radial perinuclear systems which were appeared to radiate from the surface of the nuclear envelope. The early stage of degeneration of the chalazal haustorium was accompanied by the degradation of microtubules and disruption of the parallel orientation of microtubules in the chalazal area of the cell. The degree of vacuolization increased, autophagous vacuoles appeared and the number of vesicles decreased.


Assuntos
Endosperma/citologia , Endosperma/ultraestrutura , Desenvolvimento Vegetal , Scrophulariaceae/citologia , Scrophulariaceae/ultraestrutura , Diferenciação Celular , Imuno-Histoquímica , Modelos Biológicos
19.
Protoplasma ; 250(1): 361-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22643840

RESUMO

The paper reports studies, including histological and ultrastructural analyses, of in vitro cell proliferation and development of immature endosperm tissue isolated from caryopses of Triticum aestivum, Triticum durum, and Triticosecale plants. Endosperm isolated at 7-10 days post-anthesis developed well on MS medium supplemented with auxins and/or cytokinins. The efficiency of endosperm response was highly genotype-dependent and best in two winter cultivars of hexaploid species. The pathways of development and proliferation were very similar among the selected species and cultivars. Histological and scanning electron microscope (SEM) analysis revealed that only the part of the endosperm not touching the medium surface continued growth and development, resulting in swelling. The central part of swollen regions was composed mainly of cells containing many large starch grains. The peripheric parts of developed endosperm consisted of highly vacuolated cells and small cells with dense cytoplasm. SEM showed that cells from the swollen region were covered partially with a membraneous structure. Transmission electron microscope studies of cells from the outer part of the developing region showed features typical for cell activity connected with lipid metabolism.


Assuntos
Grão Comestível/genética , Grão Comestível/ultraestrutura , Endosperma/genética , Endosperma/ultraestrutura , Grão Comestível/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Genótipo , Microscopia Eletrônica de Varredura
20.
Protoplasma ; 250(4): 863-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23178998

RESUMO

Multinucleate cells play an important role in higher plants, especially during reproduction; however, the configurations of their cytoskeletons, which are formed as a result of mitosis without cytokinesis, have mainly been studied in coenocytes. Previous authors have proposed that in spite of their developmental origin (cell fusion or mitosis without cytokinesis), in multinucleate plant cells, radiating microtubules determine the regular spacing of individual nuclei. However, with the exception of specific syncytia induced by parasitic nematodes, there is no information about the microtubular cytoskeleton in plant heterokaryotic syncytia, i.e. when the nuclei of fused cells come from different cell pools. In this paper, we describe the arrangement of microtubules in the endosperm and special endosperm-placenta syncytia in two Utricularia species. These syncytia arise from different progenitor cells, i.e. cells of the maternal sporophytic nutritive tissue and the micropylar endosperm haustorium (both maternal and paternal genetic material). The development of the endosperm in the two species studied was very similar. We describe microtubule configurations in the three functional endosperm domains: the micropylar syncytium, the endosperm proper and the chalazal haustorium. In contrast to plant syncytia that are induced by parasitic nematodes, the syncytia of Utricularia had an extensive microtubular network. Within each syncytium, two giant nuclei, coming from endosperm cells, were surrounded by a three-dimensional cage of microtubules, which formed a huge cytoplasmic domain. At the periphery of the syncytium, where new protoplasts of the nutritive cells join the syncytium, the microtubules formed a network which surrounded small nuclei from nutritive tissue cells and were also distributed through the cytoplasm. Thus, in the Utricularia syncytium, there were different sized cytoplasmic domains, whose architecture depended on the source and size of the nuclei. The endosperm proper was isolated from maternal (ovule) tissues by a cuticle layer, so the syncytium and chalazal haustorium were the only way for nutrients to be transported from the maternal tissue towards the developing embryo.


Assuntos
Endosperma/citologia , Magnoliopsida/citologia , Microtúbulos/fisiologia , Plantas/anatomia & histologia , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Microtúbulos/genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...