Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38568947

RESUMO

Structural and vibrational properties of aqueous solutions of alkali hydroxides (LiOH, NaOH, and KOH) are computed using quantum molecular dynamics simulations for solute concentrations ranging between 1 and 10M. Element-resolved partial radial distribution functions, neutron and x-ray structure factors, and angular distribution functions are computed for the three hydroxide solutions as a function of concentration. The vibrational spectra and frequency-dependent conductivity are computed from the Fourier transforms of velocity autocorrelation and current autocorrelation functions. Our results for the structure are validated with the available neutron data for 17M concentration of NaOH in water [Semrouni et al., Phys. Chem. Chem. Phys. 21, 6828 (2019)]. We found that the larger ionic radius [rLi+

2.
J Phys Chem Lett ; 15(6): 1579-1583, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38302442

RESUMO

Surface transfer doping is proposed to be a potential solution for doping diamond, which is hard to dope for applications in high-power electronics. While MoO3 is found to be an effective surface electron acceptor for hydrogen-terminated diamond with a negative electron affinity, the effects of commonly existing oxygen vacancies remain elusive. We have performed reactive molecular dynamics simulations to study the deposition of MoO3-x on a hydrogenated diamond (111) surface and used first-principles calculations based on density functional theory to investigate the electronic structures and charge transfer mechanisms. We find that MoO3-x is an effective surface electron acceptor and the spatial extent of doped holes in hydrogenated diamond is extended, promoting excellent transport properties. Charge transfer is found to monotonically decrease with the level of oxygen vacancy, providing guidance for engineering of the surface transfer doping process.

3.
J Phys Chem Lett ; 14(44): 10080-10087, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37917420

RESUMO

Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.

5.
Nano Lett ; 23(16): 7456-7462, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556684

RESUMO

We have developed an extension of the Neural Network Quantum Molecular Dynamics (NNQMD) simulation method to incorporate electric-field dynamics based on Born effective charge (BEC), called NNQMD-BEC. We first validate NNQMD-BEC for the switching mechanisms of archetypal ferroelectric PbTiO3 bulk crystal and 180° domain walls (DWs). NNQMD-BEC simulations correctly describe the nucleation-and-growth mechanism during DW switching. In triaxially strained PbTiO3 with strain conditions commonly seen in many superlattice configurations, we find that flux-closure texture can be induced with application of an electric field perpendicular to the original polarization direction. Upon field reversal, the flux-closure texture switches via a pair of transient vortices as the intermediate state, indicating an energy-efficient switching pathway. Our NNQMD-BEC method provides a theoretical guidance to study electro-mechano effects with existing machine learning force fields using a simple BEC extension, which will be relevant for engineering applications such as field-controlled switching in mechanically strained ferroelectric devices.

6.
J Phys Chem Lett ; 13(48): 11335-11345, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36454058

RESUMO

Mechanical controllability of recently discovered topological defects (e.g., skyrmions) in ferroelectric materials is of interest for the development of ultralow-power mechano-electronics that are protected against thermal noise. However, fundamental understanding is hindered by the "multiscale quantum challenge" to describe topological switching encompassing large spatiotemporal scales with quantum mechanical accuracy. Here, we overcome this challenge by developing a machine-learning-based multiscale simulation framework─a hybrid neural network quantum molecular dynamics (NNQMD) and molecular mechanics (MM) method. For nanostructures composed of SrTiO3 and PbTiO3, we find how the symmetry of mechanical loading essentially controls polar topological switching. We find under symmetry-breaking uniaxial compression a squishing-to-annihilation pathway versus formation of a topological composite named skyrmionium under symmetry-preserving isotropic compression. The distinct pathways are explained in terms of the underlying materials' elasticity and symmetry, as well as the Landau-Lifshitz-Kittel scaling law. Such rational control of ferroelectric topologies will likely facilitate exploration of the rich ferroelectric "topotronics" design space.

7.
Adv Mater ; 34(39): e2206425, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35929436

RESUMO

Piezoelectricity in low-dimensional materials and metal-semiconductor junctions has attracted recent attention. Herein, a 2D in-plane metal-semiconductor junction made of multilayer 2H and 1T' phases of molybdenum(IV) telluride (MoTe2 ) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H-1T' junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials.

8.
J Phys Chem Lett ; 13(30): 7051-7057, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35900140

RESUMO

The nature of hydrogen bonding in condensed ammonia phases, liquid and crystalline ammonia has been a topic of much investigation. Here, we use quantum molecular dynamics simulations to investigate hydrogen bond structure and lifetimes in two ammonia phases: liquid ammonia and crystalline ammonia-I. Unlike liquid water, which has two covalently bonded hydrogen and two hydrogen bonds per oxygen atom, each nitrogen atom in liquid ammonia is found to have only one hydrogen bond at 2.24 Å. The computed lifetime of the hydrogen bond is t ≅ 0.1 ps. In contrast to crystalline water-ice, we find that hydrogen bonding is practically nonexistent in crystalline ammonia-I.

9.
Sci Adv ; 8(12): eabk2625, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319991

RESUMO

Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales where these topologies emerge, we have performed multiscale excited-state neural network quantum molecular dynamics simulations that integrate quantum-mechanical description of electronic excitation and billion-atom machine learning molecular dynamics to describe ultrafast polarization control in an archetypal ferroelectric oxide, lead titanate. Far-from-equilibrium quantum simulations reveal a marked photo-induced change in the electronic energy landscape and resulting cross-over from ferroelectric to octahedral tilting topological dynamics within picoseconds. The coupling and frustration of these dynamics, in turn, create topological defects in the form of polar strings. The demonstrated nexus of multiscale quantum simulation and machine learning will boost not only the emerging field of ferroelectric topotronics but also broader optoelectronic applications.

10.
iScience ; 24(12): 103532, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917904

RESUMO

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention owing to their prosperity in material research. The inimitable features of TMDCs triggered the emerging applications in diverse areas. In this review, we focus on the tailored and engineering of the crystal lattice of TMDCs that finally enhance the efficiency of the material properties. We highlight several preparation techniques and recent advancements in compositional engineering of TMDCs structure. We summarize different approaches for TMDCs such as doping and alloying with different materials, alloying with other 2D metals, and scrutinize the technological potential of these methods. Beyond that, we also highlight the recent significant advancement in preparing 2D quasicrystals and alloying the 2D TMDCs with MAX phases. Finally, we highlight the future perspectives for crystal engineering in TMDC materials for structure stability, machine learning concept marge with materials, and their emerging applications.

11.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433137

RESUMO

Scandium-doped aluminum nitride, Al1-xScxN, represents a new class of displacive ferroelectric materials with high polarization and sharp hysteresis along with high-temperature resilience, facile synthesizability and compatibility with standard CMOS fabrication techniques. The fundamental physics behind the transformation of unswitchable piezoelectric AlN into switchable Al-Sc-N ferroelectrics depends upon important atomic properties such as local structure, dopant distributions and the presence of competing mechanism of polarization switching in the presence of an applied electric-field that have not been understood. We computationally synthesize Al1-xScxN to quantify the inhomogeneity of Sc distribution and phase segregation, and characterize its crystal and electronic structure as a function of Sc-doping. Nudged elastic band calculations of the potential energy surface and quantum molecular dynamics simulations of direct electric-field-driven ferroelectric switching reveal a crossover between two polarization reversal mechanisms-inhomogeneous nucleation-and-growth mechanism originating near Sc-rich regions in the limit of low applied fields and nucleation-limited-switching in the high-field regime. Understanding polarization reversal pathways for these two mechanisms as well as the role of local Sc concentration on activation barriers provides design rules to identify other combinations of dopant elements, such as Zr, Mg etc. to synthesize superior AlN-based ferroelectric materials.

12.
J Phys Chem Lett ; 12(25): 6020-6028, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165308

RESUMO

A remarkable property of certain covalent glasses and their melts is intermediate range order, manifested as the first sharp diffraction peak (FSDP) in neutron-scattering experiments, as was exhaustively investigated by Price, Saboungi, and collaborators. Atomistic simulations thus far have relied on either quantum molecular dynamics (QMD), with systems too small to resolve FSDP, or classical molecular dynamics, without quantum-mechanical accuracy. We investigate prototypical FSDP in GeSe2 glass and melt using neural-network quantum molecular dynamics (NNQMD) based on machine learning, which allows large simulation sizes with validated quantum mechanical accuracy to make quantitative comparisons with neutron data. The system-size dependence of the FSDP height is determined by comparing QMD and NNQMD simulations with experimental data. Partial pair distribution functions, bond-angle distributions, partial and neutron structure factors, and ring-size distributions are presented. Calculated FSDP heights agree quantitatively with neutron scattering data for GeSe2 glass at 10 K and melt at 1100 K.

13.
Phys Rev Lett ; 126(21): 216403, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114857

RESUMO

The static dielectric constant ϵ_{0} and its temperature dependence for liquid water is investigated using neural network quantum molecular dynamics (NNQMD). We compute the exact dielectric constant in canonical ensemble from NNQMD trajectories using fluctuations in macroscopic polarization computed from maximally localized Wannier functions (MLWF). Two deep neural networks are constructed. The first, NNQMD, is trained on QMD configurations for liquid water under a variety of temperature and density conditions to learn potential energy surface and forces and then perform molecular dynamics simulations. The second network, NNMLWF, is trained to predict locations of MLWF of individual molecules using the atomic configurations from NNQMD. Training data for both the neural networks is produced using a highly accurate quantum-mechanical method, DFT-SCAN that yields an excellent description of liquid water. We produce 280×10^{6} configurations of water at 7 temperatures using NNQMD and predict MLWF centers using NNMLWF to compute the polarization fluctuations. The length of trajectories needed for a converged value of the dielectric constant at 0°C is found to be 20 ns (40×10^{6} configurations with 0.5 fs time step). The computed dielectric constants for 0, 15, 30, 45, 60, 75, and 90°C are in good agreement with experiments. Our scalable scheme to compute dielectric constants with quantum accuracy is also applicable to other polar molecular liquids.

14.
J Phys Chem Lett ; 12(7): 1997-2003, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33596379

RESUMO

The typical layered transition metal dichalcogenide (TMDC) material, MoS2, is considered a promising candidate for the next-generation electronic device due to its exceptional physical and chemical properties. In chemical vapor deposition synthesis, the sulfurization of MoO3 powders is an essential reaction step in which the MoO3 reactants are converted into MoS2 products. Recent studies have suggested using an H2S/H2 mixture to reduce MoO3 powders in an effective way. However, reaction mechanisms associated with the sulfurization of MoO3 by the H2S/H2 mixture are yet to be fully understood. Here, we perform quantum molecular dynamics (QMD) simulations to investigate the sulfurization of MoO3 flakes using two different gaseous environments: pure H2S precursors and a H2S/H2 mixture. Our QMD results reveal that the H2S/H2 mixture could effectively reduce and sulfurize the MoO3 reactants through additional reactions of H2 and MoO3, thereby providing valuable input for experimental synthesis of higher-quality TMDC materials.

15.
Sci Rep ; 11(1): 1656, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462269

RESUMO

Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of [Formula: see text] monolayer crystals including [Formula: see text] alloys with substitutional point defects, periodic [Formula: see text] heterostructures with characteristic length scales and scale-free fractal [Formula: see text] heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.

16.
Struct Dyn ; 8(1): 014501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511247

RESUMO

Femtosecond carrier dynamics in layered 2H-MoTe2 semiconductor crystals have been investigated using soft x-ray transient absorption spectroscopy at the x-ray free-electron laser (XFEL) of the Pohang Accelerator Laboratory. Following above-bandgap optical excitation of 2H-MoTe2, the photoexcited hole distribution is directly probed via short-lived transitions from the Te 3d 5/2 core level (M5-edge, 572-577 eV) to transiently unoccupied states in the valence band. The optically excited electrons are separately probed via the reduced absorption probability at the Te M5-edge involving partially occupied states of the conduction band. A 400 ± 110 fs delay is observed between this transient electron signal near the conduction band minimum compared to higher-lying states within the conduction band, which we assign to hot electron relaxation. Additionally, the transient absorption signals below and above the Te M5 edge, assigned to photoexcited holes and electrons, respectively, are observed to decay concomitantly on a 1-2 ps timescale, which is interpreted as electron-hole recombination. The present work provides a benchmark for applications of XFELs for soft x-ray absorption studies of carrier-specific dynamics in semiconductors, and future opportunities enabled by this method are discussed.

17.
Nano Lett ; 20(12): 8592-8599, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33180506

RESUMO

A thorough understanding of native oxides is essential for designing semiconductor devices. Here, we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrSxSe2-x alloys and MoS2. ZrSxSe2-x alloys oxidize rapidly, and the oxidation rate increases with Se content. Oxidation of basal surfaces is initiated by favorable O2 adsorption and proceeds by a mechanism of Zr-O bond switching, that collapses the van der Waals gaps, and is facilitated by progressive redox transitions of the chalcogen. The rate-limiting process is the formation and out-diffusion of SO2. In contrast, MoS2 basal surfaces are stable due to unfavorable oxygen adsorption. Our results provide insight and quantitative guidance for designing and processing semiconductor devices based on ZrSxSe2-x and MoS2 and identify the atomistic-scale mechanisms of bonding and phase transformations in layered materials with competing anions.

18.
J Phys Chem Lett ; 11(22): 9605-9612, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33124829

RESUMO

Photoexcitation can drastically modify potential energy surfaces of materials, allowing access to hidden phases. SrTiO3 (STO) is an ideal material for photoexcitation studies due to its prevalent use in nanostructured devices and its rich range of functionality-changing lattice motions. Recently, a hidden ferroelectric phase in STO was accessed through weak terahertz excitation of polarization-inducing phonon modes. In contrast, whereas strong laser excitation was shown to induce nanostructures on STO surfaces and control nanopolarization patterns in STO-based heterostructures, the dynamic pathways underlying these optically induced structural changes remain unknown. Here nonadiabatic quantum molecular dynamics reveals picosecond amorphization in photoexcited STO at temperatures as low as 10 K. The three-stage pathway involves photoinduced charge transfer and optical phonon activation followed by nonlinear charge and lattice dynamics that ultimately lead to amorphization. This atomistic understanding could guide not only rational laser nanostructuring of STO but also broader "quantum materials on demand" technologies.

19.
ACS Nano ; 14(11): 15829-15840, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33085888

RESUMO

We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe2 semiconductor. By interrogating the valence electronic structure via localized Te 4d (39-46 eV) and Mo 4p (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15 ± 5 fs and 380 ± 90 fs, respectively, and an electron-hole recombination time of 1.5 ± 0.1 ps. Furthermore, excitations of coherent out-of-plane A1g (5.1 THz) and in-plane E1g (3.7 THz) lattice vibrations are visualized through oscillations in the XUV absorption spectra. By comparison to Bethe-Salpeter equation simulations, the spectral changes are mapped to real-space excited-state displacements of the lattice along the dominant A1g coordinate. By directly and simultaneously probing the excited carrier distribution dynamics and accompanying femtosecond lattice displacement in 2H-MoTe2 within a single experiment, our work provides a benchmark for understanding the interplay between electronic and structural dynamics in photoexcited nanomaterials.

20.
ACS Nano ; 14(1): 303-310, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31860271

RESUMO

Two-dimensional (2D) semiconductors have been extensively explored as a new class of materials with great potential. In particular, black phosphorus (BP) has been considered to be a strong candidate for applications such as high-performance infrared photodetectors. However, the scalability of BP thin film is still a challenge, and its poor stability in the air has hampered the progress of the commercialization of BP devices. Herein, we report the use of hydrothermal-synthesized and air-stable 2D tellurene nanoflakes for broadband and ultrasensitive photodetection. The tellurene nanoflakes show high hole mobilities up to 458 cm2/V·s at ambient conditions, and the tellurene photodetector presents peak extrinsic responsivity of 383 A/W, 19.2 mA/W, and 18.9 mA/W at 520 nm, 1.55 µm, and 3.39 µm light wavelength, respectively. Because of the photogating effect, high gains up to 1.9 × 103 and 3.15 × 104 are obtained at 520 nm and 3.39 µm wavelength, respectively. At the communication wavelength of 1.55 µm, the tellurene photodetector exhibits an exceptionally high anisotropic behavior, and a large bandwidth of 37 MHz is obtained. The photodetection performance at different wavelength is further supported by the corresponding quantum molecular dynamics (QMD) simulations. Our approach has demonstrated the air-stable tellurene photodetectors that fully cover the short-wave infrared band with ultrafast photoresponse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...