Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
1.
Metabolism ; 158: 155973, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986805

RESUMO

In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.

2.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906102

RESUMO

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Imunoterapia , Neoplasias Pulmonares , Neoplasias , Feminino , Humanos , Masculino , Akkermansia , Carcinoma Pulmonar de Células não Pequenas/microbiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/tratamento farmacológico , Metagenômica/métodos , Neoplasias/microbiologia , Resultado do Tratamento
3.
Mol Cancer ; 23(1): 106, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760832

RESUMO

Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.


Assuntos
Envelhecimento , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/etiologia , Animais , Suscetibilidade a Doenças , Fatores de Risco
4.
Oncoimmunology ; 13(1): 2360275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812570
6.
Oncoimmunology ; 13(1): 2360230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812571

RESUMO

Tigilanol tiglate is an oncolytic small molecule that is undergoing clinical trials. A recent study revealed the capacity of this pyroptosis inducer to elicit hallmarks of immunogenic cell death. In addition, intratumoral injection of tigilanol tiglate can sensitize subcutaneous cancers to subsequent immune checkpoint inhibitors targeting CTLA-4 alone or in combination with PD-1.


Assuntos
Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Piroptose/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
7.
Cell Stress ; 8: 51-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800095

RESUMO

In a recent issue in Nature Cell Biology, Sung Min Son et al. unveil a novel layer in the regulation of the mTORC1/autophagy axis by EP300 which can undergo nucleocytoplasmic shuttling in response to alterations in nutrient availability. The study highlights that, in Hutchinson-Gilford progeria syndrome, overabundant cytoplasmic EP300 results in mTORC1 hyperactivation and impaired autophagy, potentially contributing to premature and accelerated aging.

8.
Nat Protoc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769145

RESUMO

Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.

9.
Nat Rev Drug Discov ; 23(6): 445-460, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38622310

RESUMO

Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.


Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Morte Celular Imunogênica/efeitos dos fármacos , Animais , Imunoterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/imunologia
10.
Oncoimmunology ; 13(1): 2338951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590800

RESUMO

Recently, we showed that an autologous DC-based vaccine induces an increase in immunosuppressive PD-L1+ tumor-associated macrophages (TAM) both in the tumor and the tumor draining lymph nodes, thereby blunting the efficacy of therapeutic immunization. Only the combination of the DC vaccine with anti-PD-L1 immune checkpoint inhibition, but not the use of antibodies targeting PD-1 alone, was able to set off CD8+ cytotoxic T lymphocyte (CTL)-mediated tumor suppression in mice. In sum, we delineated a PD-L1 checkpoint blockade-based strategy to avoid TAM-induced T cell exhaustion during DC vaccine therapy.


Assuntos
Antígeno B7-H1 , Vacinas , Animais , Camundongos , Linfócitos T Citotóxicos , Linfócitos T CD8-Positivos , Macrófagos
11.
Cancer Discov ; 14(4): 658-662, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571436

RESUMO

SUMMARY: Pathogenic shifts in the gut microbiota are part of the "ecological" alterations that accompany tumor progression and compromise immunosurveillance. The future management of health and disease including cancer will rely on the diagnosis of such shifts and their therapeutic correction by general or personalized strategies, hence restoring metaorganismal homeostasis.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Homeostase
12.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582872

RESUMO

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Assuntos
Inibidor da Ligação a Diazepam , Ácido gama-Aminobutírico , Animais , Camundongos , Inibidor da Ligação a Diazepam/farmacologia
13.
Life Metab ; 3(2): loae008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523816
14.
Oncoimmunology ; 13(1): 2327143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481729

RESUMO

Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that is widely used in intensive and anesthetic care for its sedative and anxiolytic properties. DEX has the capacity to alleviate inflammatory pain while limiting immunosuppressive glucocorticoid stress during major surgery, thus harboring therapeutic benefits for oncological procedures. Recently, the molecular mechanisms of DEX-mediated anticancer effects have been partially deciphered. Together with additional preclinical data, these mechanistic insights support the hypothesis that DEX-induced therapeutic benefits are mediated via the stimulation of adaptive anti-tumor immune responses. Similarly, published clinical trials including ancillary studies described an immunostimulatory role of DEX during the perioperative period of cancer surgery. The impact of DEX on long-term patient survival remains elusive. Nevertheless, DEX-mediated immunostimulation offers an interesting therapeutic option for onco-anesthesia. Our present review comprehensively summarizes data from preclinical and clinical studies as well as from ongoing trials with a distinct focus on the role of DEX in overcoming (tumor microenvironment (TME)-imposed) cancer therapy resistance. The objective of this update is to guide clinicians in their choice toward immunostimulatory onco-anesthetic agents that have the capacity to improve disease outcome.


Assuntos
Dexmedetomidina , Neoplasias , Humanos , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Neoplasias/tratamento farmacológico , Ensaios Clínicos como Assunto
15.
Cell Stress ; 8: 21-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476764

RESUMO

The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.

16.
Nat Rev Clin Oncol ; 21(5): 370-388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38486054

RESUMO

Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.


Assuntos
Cobre , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Cobre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
17.
Oncoimmunology ; 13(1): 2308940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504848

RESUMO

Preclinical evidence indicates potent antitumor properties of local anesthetics. Numerous underlying mechanisms explaining such anticancer effects have been identified, suggesting direct cytotoxic as well as indirect immunemediated effects that together reduce the proliferative, invasive and migratory potential of malignant cells. Although some retrospective and correlative studies support these findings, prospective randomized controlled trials have not yet fully confirmed the antineoplastic activity of local anesthetics, likely due to the intricate methodology required for mitigating confounding factors. This trial watch aims at compiling all published preclinical and clinical research, along with completed and ongoing trials, that explore the potential antitumor effects of local anesthetics.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Anestésicos Locais/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
18.
Methods Cell Biol ; 181: 151-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302236

RESUMO

Cellular senescence is a molecular process that is activated in response to a large variety of distinct stress signals. Mechanistically, cellular senescence is characterized by an arrest in cell cycle accompanied by phenotypic adaptations and physiological alterations including changes in the secretory profile of senescent cells termed the senescence-associated secretory phenotype (SASP). Here we describe a detailed, automation- compatible method for the detection of senescence-associated beta galactosidase (SA-ß-gal) activity as a hallmark of cellular senescence using a conventional fluorescent microscope equipped with a transmitted light module. Moreover, we outline a protocol for the automated analysis of cellular senescence using convolutional neural networks (CNNs) and mathematical morphology. In sum, we provide a toolset for the high throughput assessment of cellular senescence based on light microscopy and automated image analysis.


Assuntos
Senescência Celular , Senescência Celular/fisiologia , Ciclo Celular , Divisão Celular
19.
Methods Cell Biol ; 181: 213-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302241

RESUMO

Cellular senescence is a cellular process with organismal impact that is mechanistically counterbalanced to a certain extent by frequent episodes of autophagy. Here we describe a detailed, automation-compatible method for the use of RNA-interference (RNAi; also called post-transcriptional gene silencing (PTGS))-mediated silencing of autophagy related protein-coding gene expression. RNAi is a conserved biological response to double-stranded RNA that mediates resistance to endogenous parasites and exogenous pathogenic nucleic acids. RNAi mediated by short interfering RNA (siRNA) is widely used for gene function analysis. The accurate use of RNAi for the inference of gene function necessitates that both specificity and efficacy of the siRNA-mediated knockdown are monitored. In this manuscript, we exemplify these crucial steps employing siRNAs targeting the autophagy and lysosomal biogenesis associated transcription factor TFE3 and validate their specificity on protein and mRNA level.


Assuntos
Autofagia , RNA de Cadeia Dupla , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Cadeia Dupla/genética , Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...