Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202386

RESUMO

Pea (Pisum sativum L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown. Here, we compare the symbiotically responsive breeding line 'Triumph' of grain pea with its parental cultivars 'Vendevil' (a donor of high symbiotic responsivity) and 'Classic' (a donor of agriculturally valuable traits) using genome and transcriptome sequencing. We show that 'Triumph' inherited one-fourth of its genome from 'Vendevil', including the genes related to AM and nodule formation, and reveal that under combined inoculation with nodule bacteria and AM fungi, 'Triumph' and 'Vendevil', in contrast to 'Classic', demonstrate similar up-regulation of the genes related to solute transport, hormonal regulation and flavonoid biosynthesis in their roots. We also identify the gene PsGLP2, whose expression pattern distinguishing 'Triumph' and 'Vendevil' from 'Classic' correlates with difference within the promoter region sequence, making it a promising marker for the symbiotic responsivity trait. The results of this study may be helpful for future molecular breeding programs aimed at creation of symbiotically responsive cultivars of pea.

2.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499210

RESUMO

The C-TERMINALLY ENCODED PEPTIDE(CEP) peptides play crucial roles in plant growth and response to environmental factors. These peptides were characterized as positive regulators of symbiotic nodule development in legume plants. However, little is known about the CEP peptide family in pea. Here, we discovered in pea genome 21 CEP genes (PsCEPs), among which three genes contained additional conserved motifs corresponding to the PIP (PAMP-induced secreted peptides) consensus sequences. We characterized the expression patterns of pea PsCEP genes based on transcriptomic data, and for six PsCEP genes with high expression levels in the root and symbiotic nodules the detailed expression analysis at different stages of symbiosis and in response to nitrate treatment was performed. We suggest that at least three PsCEP genes, PsCEP1, PsCEP7 and PsCEP2, could play a role in symbiotic nodule development, whereas the PsCEP1 and PsCEP13 genes, downregulated by nitrate addition, could be involved in regulation of nitrate-dependent processes in pea. Further functional studies are required to elucidate the functions of these PsCEP genes.


Assuntos
Pisum sativum , Nódulos Radiculares de Plantas , Nódulos Radiculares de Plantas/metabolismo , Pisum sativum/metabolismo , Fixação de Nitrogênio/genética , Nitratos/metabolismo , Simbiose/genética , Peptídeos/genética , Peptídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Plant Sci ; 13: 884726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186063

RESUMO

Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.

4.
Front Plant Sci ; 13: 843565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432395

RESUMO

In this study, the roles of glutathione (GSH), homoglutathione (hGSH), and their ratio in symbiotic nodule development and functioning, as well as in defense responses accompanying ineffective nodulation in pea (Pisum sativum) were investigated. The expression of genes involved in (h)GSH biosynthesis, thiol content, and localization of the reduced form of GSH were analyzed in nodules of wild-type pea plants and mutants sym33-3 (weak allele, "locked" infection threads, occasional bacterial release, and defense reactions) and sym33-2 (strong allele, "locked" infection threads, defense reactions), and sym40-1 (abnormal bacteroids, oxidative stress, early senescence, and defense reactions). The effects of (h)GSH depletion and GSH treatment on nodule number and development were also examined. The GSH:hGSH ratio was found to be higher in nodules than in uninoculated roots in all genotypes analyzed, with the highest value being detected in wild-type nodules. Moreover, it was demonstrated, that a hGSHS-to-GSHS switch in gene expression in nodule tissue occurs only after bacterial release and leads to an increase in the GSH:hGSH ratio. Ineffective nodules showed variable GSH:hGSH ratios that correlated with the stage of nodule development. Changes in the levels of both thiols led to the activation of defense responses in nodules. The application of a (h)GSH biosynthesis inhibitor disrupted the nitrogen fixation zone in wild-type nodules, affected symbiosome formation in sym40-1 mutant nodules, and meristem functioning and infection thread growth in sym33-3 mutant nodules. An increase in the levels of both thiols following GSH treatment promoted both infection and extension of defense responses in sym33-3 nodules, whereas a similar increase in sym40-1 nodules led to the formation of infected cells resembling wild-type nitrogen-fixing cells and the disappearance of an early senescence zone in the base of the nodule. Meanwhile, an increase in hGSH levels in sym40-1 nodules resulting from GSH treatment manifested as a restriction of infection similar to that seen in untreated sym33-3 nodules. These findings indicated that a certain level of thiols is required for proper symbiotic nitrogen fixation and that changes in thiol content or the GSH:hGSH ratio are associated with different abnormalities and defense responses.

5.
Plants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287282

RESUMO

Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.

6.
Front Microbiol ; 11: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063892

RESUMO

Two transgenic strains of Rhizobium leguminosarum bv. viciae, 3841-PsMT1 and 3841-PsMT2, were obtained. These strains contain the genetic constructions nifH-PsMT1 and nifH-PsMT2 coding for two pea (Pisum sativum L.) metallothionein genes, PsMT1 and PsMT2, fused with the promoter region of the nifH gene. The ability of both transgenic strains to form nodules on roots of the pea wild-type SGE and the mutant SGECdt, which is characterized by increased tolerance to and accumulation of cadmium (Cd) in plants, was analyzed. Without Cd treatment, the wild type and mutant SGECdt inoculated with R. leguminosarum strains 3841, 3841-PsMT1, or 3841-PsMT2 were similar histologically and in their ultrastructural organization of nodules. Nodules of wild-type SGE inoculated with strain 3841 and exposed to 0.5 µM CdCl2 were characterized by an enlarged senescence zone. It was in stark contrast to Cd-treated nodules of the mutant SGECdt that maintained their proper organization. Cadmium treatment of either wild-type SGE or mutant SGECdt did not cause significant alterations in histological organization of nodules formed by strains 3841-PsMT1 and 3841-PsMT2. Although some abnormalities were observed at the ultrastructural level, they were less pronounced in the nodules of strain 3841-PsMT1 than in those formed by 3841-PsMT2. Both transgenic strains also differed in their effects on pea plant growth and the Cd and nutrient contents in shoots. In our opinion, combination of Cd-tolerant mutant SGECdt and the strains 3841-PsMT1 or 3841-PsMT2 may be used as an original model for study of Cd tolerance mechanisms in legume-rhizobial symbiosis and possibilities for its application in phytoremediation or phytostabilization technologies.

7.
PeerJ ; 7: e8070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768303

RESUMO

At the onset of legume-rhizobial symbiosis, the mutual recognition of partners occurs based on a complicated interaction between signal molecules and receptors. Bacterial signal molecules named Nod factors ("nodulation factors") are perceived by the plant LysM-containing receptor-like kinases (LysM-RLKs) that recognize details of its structure (i.e., unique substitutions), thus providing the conditions particular to symbiosis. In the garden pea (Pisum sativum L.), the allelic state of Sym2 gene has long been reported to regulate the symbiotic specificity: for infection to be successful, plants with the Sym2 A allele (for "Sym2 Afghan", as these genotypes originate mostly from Afghanistan) require an additional acetylation of the Nod factor which is irrelevant for genotypes with the Sym2 E allele (for "Sym2 European"). Despite being described about 90 years ago, Sym2 has not yet been cloned, though phenotypic analysis suggests it probably encodes a receptor for the Nod factor. Recently, we described a novel pea gene LykX (PsLykX) from the LysM-RLK gene family that demonstrates a perfect correlation between its allelic state and the symbiotic specificity of the Sym2 A-type. Here we report on a series of Middle-Eastern pea genotypes exhibiting the phenotype of narrow symbiotic specificity discovered in the VIR plant genetic resources gene bank (Saint-Petersburg, Russia). These genotypes are new sources of Sym2 A, as has been confirmed by an allelism test with Sym2 A pea cv. Afghanistan. Within these genotypes, LykX is present either in the allelic state characteristic for cv. Afghanistan, or in another, minor allelic state found in two genotypes from Tajikistan and Turkmenistan. Plants carrying the second allele demonstrate the same block of rhizobial infection as cv. Afghanistan when inoculated with an incompatible strain. Intriguingly, this "Tajik" allele of LykX differs from the "European" one by a single nucleotide polymorphism leading to an R75P change in the receptor part of the putative protein. Thus, our new data are in agreement with the hypothesis concerning the identity of LykX and the elusive Sym2 gene.

8.
PeerJ ; 7: e6662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972251

RESUMO

Large collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the Sym11 gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an F 2-population from the cross between pea line N24 carrying the mutant allele of sym11 and the wild type NGB1238 (=JI0073) line. Sequencing libraries were prepared from bulks of 20 plants with mutant and 12 with wild-type phenotype. MACE-Seq differential gene expression analysis between mutant-phenotype and wild-type-phenotype bulks revealed 2,235 genes, of which 514 (23%) were up-regulated and 1,721 (77%) were down-regulated in plant roots inoculated with rhizobia as a consequence of sym11 mutation. MACE-Seq also detected single nucleotide variants between bulks in 217 pea genes. Using a novel mathematical model we calculated the recombination frequency (RF) between the Sym11 gene and these 217 polymorphic genes. Six genes with the lowest RF were converted into CAPS or dCAPS markers and genetically mapped on the complete mapping population of 108 F 2-plants which confirmed their tight linkage to Sym11 and to each other. The Medicago truncatula Gaertn. (Mt) homologs of these genes are located in a distinct region of Mt chromosome 5, which corresponds to linkage group I of pea. Among 94 candidate genes from this region only one was down-regulated-the pea Sym33 homolog of the Mt IPD3 gene which is essential for nodulation. Sequencing of the Sym33 allele of the N24 (sym11) mutant revealed a single nucleotide deletion (c.C319del) in its third exon resulting in a codon shift in the open reading frame and premature translation termination. Thus, we identified a novel mutant allele sym33-4 most probably responsible for the mutant phenotype of the N24 (sym11) line, thereby demonstrating that mapping by MACE-Seq can be successfully used for genetic mapping of mutations and identification of candidate genes in pea.

9.
PLoS One ; 12(10): e0186713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073280

RESUMO

Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.


Assuntos
Bases de Dados Genéticas , Marcadores Genéticos , Genoma de Planta , Internet , Pisum sativum/genética , Software , Ligação Genética , Lotus/genética , Medicago truncatula/genética , Anotação de Sequência Molecular
10.
Int J Genomics ; 2015: 695947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26688806

RESUMO

The large size and complexity of the garden pea (Pisum sativum L.) genome hamper its sequencing and the discovery of pea gene resources. Although transcriptome sequencing provides extensive information about expressed genes, some tissue-specific transcripts can only be identified from particular organs under appropriate conditions. In this study, we performed RNA sequencing of polyadenylated transcripts from young pea nodules and root tips on an Illumina GAIIx system, followed by de novo transcriptome assembly using the Trinity program. We obtained more than 58,000 and 37,000 contigs from "Nodules" and "Root Tips" assemblies, respectively. The quality of the assemblies was assessed by comparison with pea expressed sequence tags and transcriptome sequencing project data available from NCBI website. The "Nodules" assembly was compared with the "Root Tips" assembly and with pea transcriptome sequencing data from projects indicating tissue specificity. As a result, approximately 13,000 nodule-specific contigs were found and annotated by alignment to known plant protein-coding sequences and by Gene Ontology searching. Of these, 581 sequences were found to possess full CDSs and could thus be considered as novel nodule-specific transcripts of pea. The information about pea nodule-specific gene sequences can be applied for gene-based markers creation, polymorphism studies, and real-time PCR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...