Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750729

RESUMO

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Assuntos
Fosfatase Ácida , Alanina Transaminase , Fosfatase Alcalina , Aspartato Aminotransferases , Inseticidas , Ivermectina , Larva , Simulação de Acoplamento Molecular , Mariposas , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/química , Inseticidas/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Ácida/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Helicoverpa armigera
2.
J Trop Med ; 2024: 6966205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223354

RESUMO

Background: The attractive toxic sugar bait (ATSB) is a promising strategy for controlling mosquitoes at the adult stage. The strategy is based on the use of a combination of fruit juice, sugar, and a toxin in order to attract and kill the adult mosquitoes. The selection of the components and optimization of their concentrations is significant for the formulation of an effective ATSB. Methods: The present study formulated nine ATSBs and evaluated their efficacy against two laboratory strains (AND-Aedes aegypti and AND-Aedes aegypti-DL10) and two wildcaught colonized strains of Aedes aegypti (GVD-Delhi and SHD-Delhi). Initially, nine attractive sugar baits (ASBs) were prepared using a mixture of 100% fermented guava juice (attractant) with 10% sucrose solution (w/v) in 1 : 1 ratio. ATSBs were formulated by mixing each ASB with different concentrations of deltamethrin in the ratio of 9 : 1 to obtain final deltamethrin concentration of 0.003125-0.8 mg/10 mL ATSB. Cage bioassays were conducted with 50 mosquitoes for 24 h in order to evaluate the efficacy of each ATSB against the four strains of Ae. aegypti. The data were statistically analyzed using PASW software 19.0 program and 2-way ANOVA. Results: The ATSB formulations registered 8.33-97.44% mortality against AND-Aedes aegypti and 5.15-96.91% mortality against AND-Aedes aegypti-DL10 strains of Ae. aegypti, while GVD-Delhi strain registered 2.04-95.83% mortality and SHD-Delhi strain showed 5.10-97.96% mortality. The administration of 0.8 mg of deltamethrin within 10 mL of attractive toxic sugar bait (ATSB) has led to the maximum mortality rate in adult mosquitoes. Conclusions: The ATSBs formulated with guava juice-ASB and deltamethrin (9 : 1) showed toxin dose-dependent toxicity by all the four strains of Ae. aegypti. Most effective dosage was found as 0.8 mg deltamethrin/10 mL ATSB which imparted 96% to 98% mortality in adult mosquitoes. The investigations demonstrated the efficacy of deltamethrin-laced ATSB formulations against Ae. aegypti and highlighted the need for conduct of structured field trials and investigating the impact on disease vectors and nontarget organisms.

3.
Malar J ; 22(1): 92, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899429

RESUMO

BACKGROUND: Attractive toxic sugar bait (ATSB) is a promising "attract and kill"-based approach for mosquito control. It is a combination of flower nectar/fruit juice to attract the mosquitoes, sugar solution to stimulate feeding, and a toxin to kill them. Selecting an effective attractant and optimizing concentration of toxicant is significant in the formulation of ATSB. METHODS: Current study formulated an ATSB using fruit juice, sugar and deltamethrin, a synthetic pyrethroid. It was evaluated against two laboratory strains of Anopheles stephensi. Initial studies evaluated comparative attractiveness of nine different fruit juices to An. stephensi adults. Nine ASBs were prepared by adding fermented juices of plum, guava, sweet lemon, orange, mango, pineapple, muskmelon, papaya, and watermelon with 10% sucrose solution (w/v) in 1:1 ratio. Cage bioassays were conducted to assess relative attraction potential of ASBs based on the number of mosquito landings on each and the most effective ASB was identified. Ten ATSBs were prepared by adding the identified ASB with different deltamethrin concentrations (0.015625-8.0 mg/10 mL) in 1:9 ratio. Each ATSB was assessed for the toxic potential against both the strains of An. stephensi. The data was statistically analysed using PASW (SPSS) software 19.0 program. RESULTS: The cage bioassays with nine ASBs revealed higher efficacy (p < 0.05) of Guava juice-ASB > Plum juice-ASB > Mango juice-ASB in comparison to rest of the six ASB's. The bioassay with these three ASB's ascertained the highest attractancy potential of guava juice-ASB against both the strains of An. stephensi. The ATSB formulations resulted in 5.1-97.9% mortality in Sonepat (NIMR strain) with calculated LC30, LC50, and LC90 values of 0.17 mg deltamethrin/10 mL, 0.61 mg deltamethrin/10 mL, and 13.84 mg deltamethrin/10 mL ATSB, respectively. Whereas, 6.12-86.12% mortality was recorded in the GVD-Delhi (AND strain) with calculated LC30, LC50, and LC90 values of 0.25 mg deltamethrin/10 mL, 0.73 mg deltamethrin/10 mL and 10.22 mg deltamethrin/10 mL ATSB, respectively. CONCLUSION: The ATSB formulated with guava juice-ASB and deltamethrin (0.0015625-0.8%) in 9:1 ratio showed promising results against two laboratory strains of An. stephensi. Field assessment of these formulations is being conducted to estimate their feasibility for use in mosquito control.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Açúcares/toxicidade , Anopheles/fisiologia , Carboidratos , Controle de Mosquitos/métodos
4.
PLoS One ; 17(12): e0279287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584091

RESUMO

Several methods have been reported to estimate Acetylcholinesterase (AChE) enzyme activity in blood samples. The Ellman assay is the most important among all but with several shortcomings, and there is a need to develop a method which is accurate, sensitive and quick for analyzing AChE. Therefore, we have developed an assay utilizing RP-HPLC with UV detection for the determination of AChE activity. This method measured the conversion of 1-naphthol acetate to 1-naphthol to estimate AChE activity in blood samples. Performance was judged on the basis of reproducibility, sensitivity, accuracy, and the ability to screen enzyme activity within 20minutes. A series of experiments were performed, varying the concentration of blood and substrate, with optimal sensitivity using 50 µM substrate and 10µL blood. The validation parameters such as linearity (R2 of ≥ 0.9842 for 1-naphthol and ≥ 0.9897 for 1-naphthol acetate), precision (94.21-96.41%), accuracy (85.2%-99.6% and 82.6%-99.3% for 1-naphthol and 1-naphthol acetate respectively), and robustness were validated according to International Conference on Harmonization (ICH) guidelines. Blood samples were collected from healthy people, farmers exposed to spraying of pesticides, and suicidal patients who ingested pesticides and were hospitalized and were analyzed by the developed method. The AChE level was approximately 21 units/mL compared to 24units/mL in controls, whereas suicidal patients showed the least AChE levels of 1 unit/mL. The employment of this method is recommended for estimating AChE level on various matrices.


Assuntos
Inseticidas , Praguicidas , Humanos , Inseticidas/toxicidade , Acetilcolinesterase , Organofosfatos , Inibidores da Colinesterase , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão , Carbamatos
5.
Front Physiol ; 13: 1031285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311240

RESUMO

Aedes aegypti is responsible for the global spread of several ailments such as chikungunya, dengue, yellow fever, and Zika. The use of synthetic chemicals is the primary intervention in mosquito management. However, their excessive utilization resulting in the spread of toxic ingredients in the environment and posing threats to beneficial organisms has prompted the recommendation for the use of biologically synthesized nanocomposites as a promising approach for vector control. Silver nanocomposites were synthesized using leaf (AL-AgNCs) and stem (AS-AgNCs) extracts of Achyranthes aspera. The early fourth instars of A. aegypti were exposed to lethal doses of these nanocomposites to evaluate their effects on larval development, behavior, morphology, and mid-gut histoarchitecture. The cellular damage and deposition of nanocomposite residues in the mid-gut were studied using light and transmission electron microscopy. The A. aspera silver nanocomposite (AA-AgNC)-exposed larvae exhibited dose-dependent extended duration of development and diminished adult emergence, but did not exhibit modified behavior. Intense damage to the cuticle membrane and slight contraction in the internal membrane of anal papillae were noticed. Morphologically, the mid-gut appeared disorganized, darkly pigmented, and shrunk. Histological investigations of the mid-gut revealed significantly disordered internal architecture with lysed cells, damaged peritrophic membrane and microvilli, disintegrated epithelial layer, and a ruptured and displaced basement membrane. Visualization of the larval mid-gut through TEM showed severe cellular damage and aggregation of black spots, indicating the deposition of silver particles released by AA-AgNCs. The investigations revealed the bio-efficacy of A. aspera-mediated AgNCs against A. aegypti inducing stomach and contact toxicity in the larvae. The utilization of AA-AgNCs is recommended for A. aegypti management as a safe and effective intervention.

6.
Front Physiol ; 13: 988907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111159

RESUMO

Despite the continuous use of chemical interventions, Aedes-borne diseases remain on the rise. Neonicotinoids are new, safer, and relatively effective pharmacological interventions against mosquitoes. Neonicotinoids interact with the postsynaptic nicotinic acetylcholine receptors (nAChRs) of the insect central nervous system, but the absence of nAChR polymorphism in resistant phenotypes makes their involvement in neonicotinoid resistance uncertain. Thus, an investigation was carried out to understand the role of metabolic detoxification and target site insensitivity in imparting acetamiprid resistance in Aedes aegypti larvae. Studies were conducted on the parent susceptible strain (PS), acetamiprid-larval selected strain for five generations (ACSF-5; 8.83-fold resistance) and 10 generations (ACSF-10; 19.74-fold resistance) of Ae. aegypti. The larval selection raised α-esterase and ß-esterase activities by 1.32-fold and 1.34-fold, respectively, in ACSF-10 as compared to PS, while the corresponding glutathione-S-transferase and acetylcholinesterase activity increased by 22.5 and 2%. The ace-1 gene in PS and ACSF-10 showed four mismatches in the 1312-1511 bp region due to mutations in the Y455C codon (tyrosine to cysteine) at the 1367th position (TAC→TGC); I457V codon (isoleucine to valine) at 1372 bp and 1374 bp (ATA→GTG); and R494M codon (arginine to methionine) at 1484 bp (AGG→ATG). The R494M mutation was the novel and dominant type, observed in 70% ACSF-10 population, and has not been reported so far. The studies evidenced the combination of metabolic detoxification and target site mutation in imparting acetamiprid resistance in Ae. aegypti.

7.
J Trop Med ; 2022: 2977454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832334

RESUMO

Background: Attractive toxic sugar bait (ATSB), based on "attract and kill" approach, is a novel and promising strategy for mosquito control. Formulation of an attractive sugar bait (ASB) solution by selecting an efficient olfaction stimulant and preparation of an optimized sugar-attractant dosage is a significant component for the success of the approach. Methods: Current study evaluated relative potential of nine ASBs, formulated by combination of sugar and fresh fruit juices (guava, mango, muskmelon, orange, papaya, pineapple, plum, sweet lemon, and watermelon) in attracting Aedes aegypti adults. Freshly extracted and 48-hour-fermented juices were combined with 10% sucrose solution (w/v) in 1 : 1 ratio. Cage bioassays were conducted against two laboratory strains (susceptible: AND-Aedes aegypti; deltamethrin-selected: AND-Aedes aegypti-DL10) and two field-collected strains (Shahdara strain of Aedes aegypti: SHD-Delhi; Govindpuri strain of Aedes aegypti: GVD-Delhi). Each of the nine ASBs was assayed, individually or in groups of three, for its attraction potential based on the relative number of mosquito landings. The data were analysed for statistical significance using PASW (SPSS) software 19.0 program. Results: The prescreening bioassay with individual ASB revealed significantly higher efficacy of ASB containing guava/plum/mango juice than that containing six other juices (p < 0.05) against both the laboratory and field strains. The bioassay with three ASBs kept in one cage, one of the effective ASBs and two others randomly selected ASBs, also showed good attractancy of the guava/plum/mango juice-ASB (p < 0.05). The postscreening assays with these three ASBs revealed maximum attractant potential of guava juice-sucrose combination for all the four strains of Ae. aegypti. Conclusion. Guava juice-ASB showed the highest attractancy against both laboratory and field-collected strains of Ae. aegypti and can be used to formulate ATSB by combining with a toxicant. The field studies with these formulations will ascertain their efficacy and possible use in mosquito management programs.

8.
Bull Entomol Res ; 112(4): 557-566, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35199631

RESUMO

Aedes-borne diseases are on the rampant rise despite continued application of chemical insecticide-based interventions. The appearance of high degree of insecticide resistance in Aedes species and noxious effects on environment and non-targets have raised further concerns. Among new chemical interventions, neonicotinoids are considered a safe and effective approach. The present study investigated the control potency of acetamiprid and development of resistance in Aedes aegypti larvae; and the involvement of CYP450 monooxygenases in inducing resistance. The early fourth instars of Ae. aegypti parent susceptible strain (PS) were selected with acetamiprid for 15 generations (ACSF strain) increasing the resistance to 19.74-fold in ACSF-10 and 36.71-fold in ACSF-15. The ACSF-10 larvae were assayed with acetamiprid combined with piperonyl butoxide (PBO) in three different ratios (1:1, 1:5 and 1:10) and selected for next five generations with 1:10 combination. Selection with synergized acetamiprid (APSF strains) reversed as well as reduced the rate of resistance development resulting in only 1.35-fold resistance in APSF-15. The APSF strains showed %monooxygenase dependency ranging from 86.71 to 96.72%. The estimation of the monooxygenases levels in parent and selected larvae showed increased monooxygenase level in the ACSF strains by 2.42-2.87-fold. The APSF-15 strains exhibited 57.95% lower enzyme production than ACSF-15 strain. The reduction and reversion of resistance by using PBO and the elevated levels of monooxygenases in ACSF and reduction in APSF strains recommend the involvement of CYP450-mediated mechanism in the development of acetamiprid resistance in Ae. aegypti. These studies could help in devising resistance management strategies in order to preserve the efficiency of pre-existing insecticides.


Assuntos
Aedes , Dengue , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Oxigenases de Função Mista/farmacologia , Neonicotinoides/farmacologia , Piretrinas/farmacologia
10.
Saudi J Biol Sci ; 26(4): 698-708, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31048994

RESUMO

Aedes aegypti L. is the primary vector associated with transmission of globally concerned diseases; Zika, yellow fever, dengue and Chikungunya. Present study investigates an efficient, alternative and comparative approach for mosquito control which is safe to environment and non-target organisms. The silver nano-composites (AgNCs) were synthesized from the aqueous stem extract of Achyranthes aspera (AASE) using different concentration of aqueous silver nitrate (AgNO3). The synthesis was tracked by UV-vis spectrophotometer and particle size analyser (DLS). The evaluation of their larvicidal potential against early fourth instars of Ae. aegypti showed significant potency, the toxicity increasing with the concentration of silver nitrate. The 24, 48 and 72 h bioassays resulted in respective LC50 values of 26.693, 1.113 and 0.610 µg/mL (3 mM AASE-AgNO3) 9.119, 0.420 and 0.407 µg/mL (4 mM AASE-AgNO3) and that of 4.283, 0.3 and 0.248 µg/mL (5 mM AASE-AgNO3). Keeping in view the significantly high larvicidal efficiency at lower concentration of silver nitrate, the 4 mM nano-composites were selected over 5 mM composites for further biophysical characterization carried out by X-ray Diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) spectroscopy and Transmission electron microscopy (TEM). SEM and TEM confirmed the synthesis of spherical poly-dispersed AgNCs with average size ranging from 1-30 nm. Characterization through XRD showed the crystalline face-centered-cubic (fcc) structure of AgNCs with the highest intense peak obtained at 2θ value of 31.82°. FT-IR data suggests complex nature of AgNCs showing clearly defined peaks in different ranges. The present investigations recommend AgNCs of A. aspera stems as a low-cost and eco-friendly alternative to chemical insecticides for mosquito control.

11.
J Parasit Dis ; 41(4): 1066-1073, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29114143

RESUMO

Current studies investigated the anti-mosquito potential of Achyranthes aspera against the dengue vector, Aedes aegypti. The stems and leaves of A. aspera were extracted in hexane and evaluated for their toxicity against early fourth instars of A. aegypti. The larvicidal efficacy of the extract was validated as per WHO protocol. The mortality counts were made after 24 h and LC values were calculated at different levels. The adverse impact of extracts was also explored on the larval genomic DNA. The larvae were exposed to extracts at LC50 levels and the alterations in g-DNA was evaluated through RAPD-PCR technique using three random primers; MA-09, MA-12 and MA-26. Our investigations ascertained the larvicidal efficacy of both the leaf and stem extracts of A. aspera resulting in respective LC50 values of 0.068 and 0.082 mg/mL. The extracts also caused variable genotoxic effects with significant changes in the RAPD profiles. The results showed appreciable modifications in larval g-DNA with loss of certain bands and gain of unique bands with 82.35% DNA polymorphism. These alterations suggest the probable DNA damage and mutations in the larval g-DNA caused by certain phytocomponents which could be the possible reason of larval mortality. Our studies evidenced the anti-mosquito potential of A. aspera extracts against A. aegypti causing appreciable larval mortality and significant changes in g-DNA. The A. aspera extracts are suggested as efficient and eco-friendly control agent against A. aegypti, yet further investigations are needed to identify the bioactive constituent and ascertain its effectiveness in the field conditions.

12.
J Parasitol Res ; 2016: 2857089, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941996

RESUMO

Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80-100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5-85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action.

13.
Int J Insect Sci ; 7: 53-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26813920

RESUMO

Helicoverpa armigera Hübner is one of the most important agricultural crop pests in the world causing heavy crop yield losses. The continued and indiscriminate use of synthetic insecticides in agriculture for their control has received wide public apprehension because of multifarious problems, including insecticide resistance, resurgence of pest species, environmental pollution, and toxic hazards to humans and nontarget organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and biodegradable plant products. In view of this, the efficacy of Thevetia neriifolia methanol stem extract was evaluated against the early fourth instars of H. armigera as an antifeedant and stomach poison agent. Feeding of larvae with the diet containing 0.005%-5.0% extract resulted in 2.06%-37.35% antifeedant index; the diet with 5.0% extract caused 54.3% reduced consumption. The negative impact of extract on larval feeding resulted in 37.5%-77.7% starvation, causing adverse effects on the larval weight. Choice between control and experimental diet resulted in feeding preference of larvae for the control diet, leading to 7.3%-42.9% reduced consumption of extract-containing diet. The only exception was the diet with 0.005% extract, which could not cause any deterrence. The midgut histological architecture of H. armigera larvae fed with 0.005%-0.05% extract-containing diet with negligible antifeedant potential showed significant damage, shrinkage, and distortion and vacuolization of gut tissues and peritrophic membrane, causing the disintegration of epithelial, goblet, and regenerative cells; the damage increased with the increase in concentration. These changes in the gut caused negative impact on the digestion and absorption of food and thus nutritional deficiency in the larvae, which could probably affect their growth and development. This study reveal the appreciable stomach poison potential of T. neriifolia stem methanol extract against H. armigera larvae, which can be explored as an eco-friendly pest control strategy.

14.
Front Public Health ; 2: 147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279371

RESUMO

Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the environment would help in devising mosquito-management strategies.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35241958

RESUMO

Present investigations evaluated the impact of Argemone mexicana stem extracts on the reproductive fitness of dengue vector, Aedes aegypti, assessed in terms of oviposition deterrent and ovicidal potential. The oviposition deterrent studies of the extracts, prepared using petroleum ether, hexane, benzene, acetone, and ethanol as the solvents, revealed the maximum deterrence potency of the petroleum ether extracts with a significant 15.6% ED at 60 ppm rising by 83.8% at 1000 ppm to 99.4% effective deterrence (ED). Other stem extracts were found to be ineffective at 60 ppm, though resulted in 85.3-96.2% ED and diminished fecundity in A. aegypti at 1000 ppm. Further, A. mexicana stem extracts exhibited moderate ovicidal potential against A. aegypti eggs causing only 42.65-67.85% egg mortality at 1000 ppm, the lowest hatch of 32.15% caused by the benzene extract. Other stem extracts also failed to express effective ovicidal potency with the percent egg hatch ranging between 96.6 and 99.0 at 400 ppm, and 78.8 and 99.0 at 600 ppm. Our results suggest the significant but variable efficacy of A. mexicana stem extracts causing reproductive disadvantage in A. aegypti.

16.
Parasitol Res ; 112(10): 3477-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23835923

RESUMO

The larvicidal, behavioral, and morphological response of dengue vector, Aedes aegypti treated with deleterious weed, Argemone mexicana, was explored. The 1,000 ppm extracts of A. mexicana leaf, stem, and roots prepared in five different solvents (petroleum ether, hexane, benzene, acetone, and ethanol) were screened for their larvicidal activity against dengue vector establishing the efficacy of petroleum ether and hexane extracts. Other extracts, unable to give 100% mortality, were considered ineffective and discarded from further study. Larvicidal bioassay conducted with selected extracts confirmed the higher efficacy of hexane extracts exhibiting 1.1- to 1.8-fold more potential than the petroleum ether extracts. The results further revealed 1.6- to 2.4-fold higher efficacy of root extracts than those prepared from the leaves and stem of A. mexicana. The hexane root extract of A. mexicana was found to be the most effective larvicide with LC50 value of 91.331 ppm after 24 h of exposure causing 1.8 and 2.4 fold more toxicity as compared to the hexane leaf and stem extracts, respectively. Prolonged exposure of the larvae to the extracts resulted in increased toxicity potential of the extracts. Observations of the treated larvae revealed excitation, violent vertical, and horizontal movements with aggressive anal biting behavior suggesting effect of extracts on their neuromuscular system. Morphological studies of the treated larvae revealed the demelanization of cuticle and shrinkage of internal cuticle of anal papillae indicating the anal papillae as the probable action sites of the A. mexicana extracts. The potential of A. mexicana as new larvicides against dengue vector are being explored.


Assuntos
Aedes/efeitos dos fármacos , Argemone/química , Comportamento Animal/efeitos dos fármacos , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Animais , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química
17.
Front Physiol ; 3: 104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536188

RESUMO

The adverse effects of chemical insecticides-based intervention measures for the control of mosquito vectors have received wide public apprehension because of several problems like insecticide resistance, resurgence of pest species, environmental pollution, toxic hazards to humans, and non-target organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly, environmentally safe, bio-degradable plant products which are non-toxic to non-target organisms too. In view of this, 15 plant species were collected from local areas in New Delhi, India. Different parts of these plants were separated, dried, mechanically grinded, and sieved to get fine powder. The 200 g of each part was soaked in 1000 mL of different solvents separately and the crude extracts, thus formed, were concentrated using a vacuum evaporator at 45°C under low pressure. Each extract was screened to explore its potential as a mosquito larvicidal agent against early fourth instars of dengue vector, Aedes aegypti using WHO protocol. The preliminary screening showed that only 10 plants possessed larvicidal potential as they could result in 100% mortality at 1000 ppm. Further evaluation of the potential larvicidal extracts established the hexane leaf extract of Lantana camara to be most effective extract exhibiting a significant LC(50) value of 30.71 ppm while the Phyllanthus emblica fruit extract was found to be least effective with an LC(50) value of 298.93 ppm. The extracts made from different parts of other five plants; Achyranthes aspera, Zingiber officinalis, Ricinus communis, Trachyspermum ammi, and Cassia occidentalis also possessed significant larvicidal potential with LC(50) values ranging from 55.0 to 74.67 ppm. Other three extracts showed moderate toxicity against A. aegypti larvae. Further investigations would be needed to isolate and identify the primary component responsible for the larvicidal efficiency of the effective plants.

18.
Parasitol Res ; 111(1): 173-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22231268

RESUMO

The extracts from the peels of Citrus limetta were prepared using hexane and petroleum ether as the solvents. The larvicidal potential of each extract was assessed against dengue fever vector, Aedes aegypti, and malarial vector, Anopheles stephensi, by evaluating the toxicity effects on early fourth instars. Both the extracts were found effective against both the species. The bioassay with hexane extracts resulted in LC(50) values of 132.45 and 96.15 ppm against A. stephensi and A. aegypti, respectively; while the petroleum ether extracts from the C. limetta peels showed LC(50) values of 244.59 and 145.50 ppm, respectively. It revealed that the hexane extracts possessed 1.9-fold more larvicidal potential against A. stephensi and 1.5-fold more efficacy against A. aegypti as compared to the extracts obtained using petroleum ether as solvent. The data further revealed that the extracts were 1.4-1.7 times more effective against A. aegypti as compared to A. stephensi. The qualitative phytochemical study of the extracts showed the presence of terpenoids and flavonoids as the common phytochemical constituents in the extracts suggesting their possible role in the toxicity. Other constituents tested were not detected except alkaloids which were found to be present only in the petroleum ether extract. Further studies are needed to isolate and identify the active principles involved, their mode of action, formulated preparations for enhancing potency and stability, toxicity, and effects on non-target organisms and the environment. This could help in formulating efficient strategies for mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Citrus/química , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Alcaloides/análise , Animais , Feminino , Flavonoides/análise , Frutas/química , Índia , Inseticidas/química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Análise de Sobrevida , Terpenos/análise
19.
Asian Pac J Trop Biomed ; 2(2): 152-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23569887

RESUMO

OBJECTIVE: To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). METHODS: The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. RESULTS: The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper. CONCLUSIONS: The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Citrus sinensis/metabolismo , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Animais , Dengue/transmissão , Vetores de Doenças , Feminino , Larva/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Asian Pac J Trop Med ; 4(6): 426-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21771692

RESUMO

OBJECTIVE: To understand the insecticide resistance status of Culex quinquefasciatus Say (Diptera: Culicidae) (Cx. Quinquefasciatus) to deltamethrin, cyfluthrin, permethrin, lambdacyhalothrin, DDT and malathion in filarial endemic areas of Uttar Pradesh, India. METHODS: Insecticide susceptibility assays were performed on wild-caught adult female Cx. quinquefasciatus mosquitoes to deltamethrin (0.05%), cyfluthrin (0.15%), permethrin (0.75%), lambdacyhalothrin (0.05%), malathion (5.0%) and DDT (4.0%), the discriminating doses recommended by the World Health Organisation (WHO). RESULTS: The data showed that Cx. quinquefasciatus is highly resistant to DDT and malathion; the mortality was 28.33% and 27.5%, respectively and incipient resistance to synthetic pyrethroids (deltamethrin, cyfluthrin, permethrin, and lambdacyhalothrin), where mortality ranged from 95.83% in permethrin to 98.33% in cyfluthrin and lambdacyhalothrin. Knockdown times (KDT(50)) in response to synthetic pyrethroids varied significantly between different insecticides (P<0.01) from 31.480 min for permethrin to 21.650 for cyfluthrin. CONCLUSIONS: The results presents here provide the status report of the insecticide resistance/susceptibility of Cx. quinquefasciatus in major filaria endemic areas of northern India.


Assuntos
Culex , Filariose/prevenção & controle , Insetos Vetores , Inseticidas/farmacologia , Controle de Mosquitos , Wuchereria bancrofti , Animais , Feminino , Filariose/transmissão , Humanos , Índia , Resistência a Inseticidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...