Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13772, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877099

RESUMO

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~ 120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.


Assuntos
Glutaminase , Células-Tronco Pluripotentes Induzidas , Expansão das Repetições de Trinucleotídeos , Humanos , Glutaminase/genética , Glutaminase/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas
2.
iScience ; 27(2): 108814, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303711

RESUMO

A long CGG-repeat tract in the FMR1 gene induces the epigenetic silencing that causes fragile X syndrome (FXS). Epigenetic changes include H4K20 trimethylation, a heterochromatic modification frequently implicated in transcriptional silencing. Here, we report that treatment with A-196, an inhibitor of SUV420H1/H2, the enzymes responsible for H4K20 di-/trimethylation, does not affect FMR1 transcription, but does result in increased chromosomal duplications. Increased duplications were also seen in FXS cells treated with SCR7, an inhibitor of Lig4, a ligase essential for NHEJ. Our study suggests that the fragile X (FX) locus is prone to spontaneous DNA damage that is normally repaired by NHEJ. We suggest that heterochromatinization of the FX allele may be triggered, at least in part, in response to this DNA damage.

3.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260514

RESUMO

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.

4.
Front Genet ; 12: 708860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567068

RESUMO

The human genome has many chromosomal regions that are fragile, demonstrating chromatin breaks, gaps, or constrictions on exposure to replication stress. Common fragile sites (CFSs) are found widely distributed in the population, with the largest subset of these sites being induced by aphidicolin (APH). Other fragile sites are only found in a subset of the population. One group of these so-called rare fragile sites (RFSs) is induced by folate stress. APH-inducible CFSs are generally located in large transcriptionally active genes that are A + T rich and often enriched for tracts of AT-dinucleotide repeats. In contrast, all the folate-sensitive sites mapped to date consist of transcriptionally silenced CGG microsatellites. Thus, all the folate-sensitive fragile sites may have a very similar molecular basis that differs in key ways from that of the APH CFSs. The folate-sensitive FSs include FRAXA that is associated with Fragile X syndrome (FXS), the most common heritable form of intellectual disability. Both CFSs and RFSs can cause chromosomal abnormalities. Recent work suggests that both APH-inducible fragile sites and FRAXA undergo Mitotic DNA synthesis (MiDAS) when exposed to APH or folate stress, respectively. Interestingly, blocking MiDAS in both cases prevents chromosome fragility but increases the risk of chromosome mis-segregation. MiDAS of both APH-inducible and FRAXA involves conservative DNA replication and POLD3, an accessory subunit of the replicative polymerase Pol δ that is essential for break-induced replication (BIR). Thus, MiDAS is thought to proceed via some form of BIR-like process. This review will discuss the recent work that highlights the similarities and differences between these two groups of fragile sites and the growing evidence for the presence of many more novel fragile sites in the human genome.

5.
J Huntingtons Dis ; 10(1): 149-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579860

RESUMO

Huntington's disease (HD) is one of a large group of human disorders that are caused by expanded DNA repeats. These repeat expansion disorders can have repeat units of different size and sequence that can be located in any part of the gene and, while the pathological consequences of the expansion can differ widely, there is evidence to suggest that the underlying mutational mechanism may be similar. In the case of HD, the expanded repeat unit is a CAG trinucleotide located in exon 1 of the huntingtin (HTT) gene, resulting in an expanded polyglutamine tract in the huntingtin protein. Expansion results in neuronal cell death, particularly in the striatum. Emerging evidence suggests that somatic CAG expansion, specifically expansion occurring in the brain during the lifetime of an individual, contributes to an earlier disease onset and increased severity. In this review we will discuss mouse models of two non-CAG repeat expansion diseases, specifically the Fragile X-related disorders (FXDs) and Friedreich ataxia (FRDA). We will compare and contrast these models with mouse and patient-derived cell models of various other repeat expansion disorders and the relevance of these findings for somatic expansion in HD. We will also describe additional genetic factors and pathways that modify somatic expansion in the FXD mouse model for which no comparable data yet exists in HD mice or humans. These additional factors expand the potential druggable space for diseases like HD where somatic expansion is a significant contributor to disease impact.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Síndrome do Cromossomo X Frágil/genética , Ataxia de Friedreich/genética , Genes Modificadores/genética , Instabilidade Genômica/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Humanos , Camundongos
6.
Genes (Basel) ; 11(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230785

RESUMO

In fragile X syndrome (FXS), expansion of a CGG repeat tract in the 5'-untranslated region of the FMR1 gene to >200 repeats causes transcriptional silencing by inducing heterochromatin formation. Understanding the mechanism of FMR1 silencing is important as gene reactivation is a potential treatment approach for FXS. To date, only the DNA demethylating drug 5-azadeoxycytidine (AZA) has proved effective at gene reactivation; however, this drug is toxic. The repressive H3K9 methylation mark is enriched on the FMR1 gene in FXS patient cells and is thus a potential druggable target. However, its contribution to the silencing process is unclear. Here, we studied the effect of small molecule inhibitors of H3K9 methylation on FMR1 expression in FXS patient cells. Chaetocin showed a small effect on FMR1 gene reactivation and a synergistic effect on FMR1 mRNA levels when used in combination with AZA. Additionally, chaetocin, BIX01294 and 3-Deazaneplanocin A (DZNep) were able to significantly delay the re-silencing of AZA-reactivated FMR1 alleles. These data are consistent with the idea that H3K9 methylation precedes DNA methylation and that removal of DNA methylation is necessary to see the optimal effect of histone methyl-transferase (HMT) inhibitors on FMR1 gene expression. Nonetheless, our data also show that drugs targeting repressive H3K9 methylation marks are able to produce sustained reactivation of the FMR1 gene after a single dose of AZA.


Assuntos
Metilação de DNA , Proteína do X Frágil da Deficiência Intelectual/antagonistas & inibidores , Síndrome do Cromossomo X Frágil/genética , Inativação Gênica , Preparações Farmacêuticas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Alelos , Células Cultivadas , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Humanos , Repetições de Trinucleotídeos
8.
Brain Sci ; 9(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426300

RESUMO

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability, as well as the most common known monogenic cause of autism spectrum disorder (ASD), affecting 1 in 4000-8000 people worldwide [...].

9.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30970188

RESUMO

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ataxia/genética , Deficiências do Desenvolvimento/genética , Glutaminase/deficiência , Glutaminase/genética , Glutamina/metabolismo , Repetições de Microssatélites , Mutação , Atrofia/genética , Cerebelo/patologia , Pré-Escolar , Feminino , Genótipo , Glutamina/análise , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Sequenciamento Completo do Genoma
10.
Brain Sci ; 9(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759772

RESUMO

More than ~200 CGG repeats in the 5' untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.

11.
Hum Genet ; 136(10): 1313-1327, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28866801

RESUMO

The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.


Assuntos
Ataxia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Inativação Gênica , Insuficiência Ovariana Primária , Estabilidade de RNA , Tremor , Ataxia/genética , Ataxia/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Masculino , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Tremor/genética , Tremor/metabolismo
12.
Mol Autism ; 7: 42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713816

RESUMO

BACKGROUND: Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. METHODS: We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. RESULTS: We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ~400, DNA methylation erodes, even when the repeat number remains >200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. CONCLUSIONS: Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with >400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different mechanisms. Our data also suggest that the threshold for stable methylation of FM alleles may be higher than previously thought. A higher threshold might explain why some carriers of FM alleles escape methylation. It may also provide a simple explanation for why silencing has not been observed in mouse models with >200 repeats.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Inativação Gênica , Neurônios/metabolismo , Expansão das Repetições de Trinucleotídeos , Regiões 5' não Traduzidas , Alelos , Diferenciação Celular , Linhagem Celular , Metilação de DNA , Células-Tronco Embrionárias/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Neurônios/patologia , Cultura Primária de Células , Fatores de Tempo
13.
J Mol Diagn ; 18(5): 762-774, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27528259

RESUMO

The diagnosis and study of the fragile X-related disorders is complicated by the difficulty of amplifying the long CGG/CCG-repeat tracts that are responsible for disease pathology, the potential presence of AGG interruptions within the repeat tract that can ameliorate expansion risk, the occurrence of variable DNA methylation that modulates disease severity, and the high frequency of mosaicism for both repeat number and methylation status. These factors complicate patient risk assessment. In addition, the variability in these parameters that is seen when patient cells are grown in culture requires their frequent monitoring to ensure reproducible results in a research setting. Many existing assays have the limited ability to amplify long alleles, particularly in a mixture of different allele sizes. Others are better at this, but are too expensive for routine use in most laboratories or for newborn screening programs and use reagents that are proprietary. We describe herein a set of assays to routinely evaluate all of these important parameters in a time- and cost-effective way.


Assuntos
Alelos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Testes Genéticos , Mutação , Linhagem Celular , Metilação de DNA , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Fluxo de Trabalho
14.
Hum Mol Genet ; 25(17): 3689-3698, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27378697

RESUMO

Expansion of a CGG-repeat tract in the 5'-untranslated region of the FMR1 gene to >200 repeats results in epigenetic silencing of the gene by a mechanism that is still unknown. FMR1 gene silencing results in fragile X syndrome (FXS), the most common heritable cause of intellectual disability. We have previously shown that reactivation of the FMR1 gene in FXS cells with 5-azadeoxycytidine (AZA) leads to the transient recruitment of EZH2, the polycomb repressive complex 2 (PRC2) component responsible for H3K27 trimethylation, and that this recruitment depends on the presence of the FMR1 transcript. However, whether H3K27 trimethylation was essential for FMR1 re-silencing was not known. We show here that EZH2 inhibitors increased FMR1 expression and significantly delayed re-silencing of the FMR1 gene in AZA-treated FXS cells. This delay occurred despite the fact that EZH2 inhibition did not prevent the return of DNA methylation. Treatment with compound 1a, a small molecule that targets CGG-repeats in the FMR1 mRNA, also resulted in sustained expression of the FMR1 gene in AZA-treated cells. This effect of 1a was also associated with a decrease in the levels of H3K27 trimethylation but not DNA methylation. Thus, our data show that EZH2 plays a critical role in the FMR1 gene silencing process and that its inhibition can prolong expression of the FMR1 gene even in the presence of its transcript.


Assuntos
Azacitidina/análogos & derivados , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Histonas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA , Decitabina , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Metilação/efeitos dos fármacos , Repetições de Microssatélites/efeitos dos fármacos , Regulação para Cima
15.
Hum Mol Genet ; 24(24): 7087-96, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420841

RESUMO

Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSß complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSß-independent one that generates small contractions and a MutSß-dependent one that generates larger ones. We also show that MutSß complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSß increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Proteínas/fisiologia , Expansão das Repetições de Trinucleotídeos , Animais , Linhagem Celular , Instabilidade Cromossômica , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Mutação em Linhagem Germinativa , Masculino , Camundongos , Camundongos Mutantes , Proteína 3 Homóloga a MutS , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas/genética
16.
Mutat Res ; 781: 14-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26379101

RESUMO

Friedreich ataxia (FRDA) is a member of the Repeat Expansion Diseases, a group of genetic conditions resulting from an increase/expansion in the size of a specific tandem array. FRDA results from expansion of a GAA/TTC-tract in the first intron of the frataxin gene (FXN). The disease-associated tandem repeats all form secondary structures that are thought to contribute to the propensity of the repeat to expand. The subset of these diseases that result from a CGG/CCG-repeat expansion, such as Fragile X syndrome, also express a folate-sensitive fragile site coincident with the repeat on the affected chromosome. This chromosome fragility involves the generation of chromosome/chromatid gaps or breaks, or the high frequency loss of one or both copies of the affected gene when cells are grown under folate stress or as we showed previously, in the presence of an inhibitor of the ATM checkpoint kinase. Whether Repeat Expansion Disease loci containing different repeats form similar fragile sites was not known. We show here that the region of chromosome 9 that contains the FXN locus is intrinsically prone to breakage in vivo even in control cells. However, like FXS alleles, FRDA alleles show significantly elevated levels of chromosome abnormalities in the presence of an ATM inhibitor, consistent with the formation of a fragile site.


Assuntos
Fragilidade Cromossômica/genética , Cromossomos Humanos Par 9/genética , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Sequência de Bases , Linhagem Celular , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA , Expansão das Repetições de Trinucleotídeos , Frataxina
17.
Front Genet ; 6: 192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089834

RESUMO

The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

18.
Stem Cells Transl Med ; 4(7): 800-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25999519

RESUMO

UNLABELLED: : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. SIGNIFICANCE: In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings.

19.
Hum Mutat ; 35(12): 1485-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224527

RESUMO

Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, fragile X mental retardation protein (FMRP), an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2, and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). The treatment with small molecules that inhibit S6K1 and a known FMRP target, phosphoinositide 3-kinase (PI3K) catalytic subunit p110ß, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.


Assuntos
Biomarcadores/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Humanos , Leucina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Quinases S6 Ribossômicas/metabolismo
20.
Front Genet ; 5: 226, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101111

RESUMO

The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5' UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...