Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17029, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043695

RESUMO

Fabrication and extensive characterization of hard-soft nanocomposites composed of hard magnetic low-temperature phase LTP-MnBi and amorphous Fe70Si10B20 soft magnetic phase for bulk magnets are reported. Samples with compositions Mn55Bi45 + x⋅(Fe70Si10B20) (x = 0, 3, 5, 10, 20 wt.%) were prepared by spark plasma sintering of powder mixtures. Characterization has been performed by X-ray diffraction, scanning and transmission electron microscopy, magnetometry and 57Fe MÓ§ssbauer spectroscopy. It was shown that samples contain crystallized and nanometric LTP-MnBi phases with various elemental compositions depending on the degree of Bi clustering. Complex correlations between starting compositions, processes during fabrication, and functional magnetic characteristics were observed. Unexpected special situations of the relation between microstructure and magnetic coupling mechanisms are discovered. Exchange spring effects of different strengths occur, being very sensitive to morpho-structural and compositional features, which in turn are controlled by processing conditions. An in-depth analysis of related microscopic characteristics is provided. Results of this work suggest that fabrication by powder metallurgy routes, such as spark plasma sintering of hard and soft magnetic powder mixtures, of MnBi-based composites with exchange spring phenomena have a high potential in designing and optimization of suitable materials with tunable magnetic properties towards rare-earth-free permanent magnet applications.

2.
Sci Rep ; 13(1): 6915, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105994

RESUMO

High density (99.5%) ceramic composite composed of titanium boride and boron carbide (70/30 vol%) was obtained by spark plasma sintering and was tested by 3-point bending test in Ar atmosphere at 1800 °C. Bending strength was high, around 1.1 GPa. The strength-strain curve presents a peculiar shape composed of three regions where elastic and plastic deformations are active with a different weight. Based on transmission electron microscopy observations we propose a process of mechanical energy absorption driven by shear stress in the boron carbide crystals: stacking faults with (1-11) and (011) stacking planes and twins with (1-11) twinning plane rearrange into nano-twins with (10-1) twinning planes, orthogonal but equivalent to the initial ones. This rearrangement mechanism provides in the first instance a plastic signature, but further contributes strengthening.

3.
Soft Matter ; 18(3): 626-639, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34931628

RESUMO

High magnetization Fe3O4/OA-FeCo/Al2O3 nanocomposite magnetic clusters have been obtained using a modified oil-in-water miniemulsion method. These nanocomposite clusters dispersed in a ferrofluid carrier result in a magnetorheological fluid with improved characteristics. The magnetic clusters have a magnetic core consisting of a mixture of magnetite nanoparticles of about 6 nm average size, stabilized with oleic acid (Fe3O4/OA) and FeCo/Al2O3 particles of about 50 nm average size, compactly packed in the form of spherical clusters with a diameter distribution in the range 100-300 nm and a hydrophilic coating of sodium lauryl sulphate surfactant. The surface chemical composition of the Fe3O4/OA-FeCo/Al2O3 clusters investigated by XPS indicates the presence of the Co2+ and Co3+ oxidation states of cobalt and the components of Fe2+ and Fe3+ characteristic to both an enhanced oxidation state at the surface of the FeCo particles and to the presence of magnetic nanoparticles of spinel structure which are decorating the supporting FeCo. This specific decorating morphology is also indicated by TEM images. Advanced characterization of the Fe3O4/OA-FeCo/Al2O3 magnetic clusters has been performed using Mössbauer spectroscopy and magnetization measurements at various temperatures between 6 K and 200 K. The unexpected formation of Co ferrite decorating nanoparticles was supported by Mössbauer spectroscopy. The dispersion of magnetic clusters in the ferrofluid carrier highly influences the flow properties in the absence of the field (shear thinning for low and moderate shear rates) and especially in applied magnetic field, when significant magnetoviscous effect and shear thinning was observed for the whole range of shear rate values. Detailed analysis of the magnetorheological behavior of the nanocomposite magnetic clusters dispersed in a ferrofluid carrier evidence significantly higher normalized dynamic yield stress values in comparison with the magnetite nanocluster suspensions of the same mass concentration, a promising result for this new type of nanocomposite magnetorheological fluid.

4.
Sci Rep ; 10(1): 17174, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057106

RESUMO

Structural and magnetic properties of Fe oxide nanoparticles prepared by laser pyrolysis and annealed in high pressure hydrogen atmosphere were investigated. The annealing treatments were performed at 200 °C (sample A200C) and 300 °C (sample A300C). The as prepared sample, A, consists of nanoparticles with ~ 4 nm mean particle size and contains C (~ 11 at.%), Fe and O. The Fe/O ratio is between γ-Fe2O3 and Fe3O4 stoichiometric ratios. A change in the oxidation state, crystallinity and particle size is evidenced for the nanoparticles in sample A200C. The Fe oxide nanoparticles are completely reduced in sample A300C to α-Fe single phase. The blocking temperature increases from 106 K in A to 110 K in A200C and above room temperature in A300C, where strong inter-particle interactions are evidenced. Magnetic parameters, of interest for applications, have been considerably varied by the specific hydrogenation treatments, in direct connection to the induced specific changes of particle size, crystallinity and phase composition. For the A and A200C samples, a field cooling dependent unidirectional anisotropy was observed especially at low temperatures, supporting the presence of nanoparticles with core-shell-like structures. Surprisingly high MS values, almost 50% higher than for bulk metallic Fe, were evidenced in sample A300C.

5.
Sci Rep ; 9(1): 19484, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863060

RESUMO

Mixtures of B4C, α-AlB12 and B powders were reactively spark plasma sintered at 1800 °C. Crystalline and amorphous boron powders were used. Samples were tested for their impact behavior by the Split Hopkinson Pressure Bar method. When the ratio R = B4C/α-AlB12 ≥ 1.3 for a constant B-amount, the major phase in the samples was the orthorhombic AlB24C4, and when R < 1 the amount of AlB24C4 significantly decreased. Predictions that AlB24C4 has the best mechanical impact properties since it is the most compact and close to the ideal cubic packing among the Al-B-C phases containing B12-type icosahedra were partially confirmed. Namely, the highest values of the Vickers hardness (32.4 GPa), dynamic strength (1323 MPa), strain and toughness were determined for the samples with R = 1.3, i.e., for the samples with a high amount of AlB24C4. However, the existence of a maximum, detectable especially in the dynamic strength vs. R, indicated the additional influence of the phases and the composite's microstructure in the samples. The type of boron does not influence the dependencies of the indicated mechanical parameters with R, but the curves are shifted to slightly higher values for the samples in which amorphous boron was used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...