Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nagoya J Med Sci ; 86(2): 216-222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962417

RESUMO

Psychiatric disorders are highly inheritable, and most psychiatric disorders exhibit genetic overlap. Recent studies associated the 3q29 recurrent deletion with schizophrenia (SCZ) and autism spectrum disorder (ASD). In this study, we investigated the association of genes in the 3q29 region with SCZ and ASD. TM4SF19 and PAK2 were chosen as candidate genes for this study based on evidence from previous research. We sequenced TM4SF19 and PAK2 in 437 SCZ cases, 187 ASD cases and 524 controls in the Japanese population. Through targeted sequencing, we identified 6 missense variants among the cases (ASD & SCZ), 3 missense variants among controls, and 1 variant common to both cases and controls; however, no loss-of-function variants were identified. Fisher's exact test showed a significant association of variants in TM4SF19 among cases (p=0.0160). These results suggest TM4SF19 variants affect the etiology of SCZ and ASD in the Japanese population. Further research examining 3q29 region genes and their association with SCZ and ASD is thus needed.


Assuntos
Povo Asiático , Transtorno do Espectro Autista , Predisposição Genética para Doença , Esquizofrenia , Humanos , Transtorno do Espectro Autista/genética , Esquizofrenia/genética , Feminino , Masculino , Japão , Povo Asiático/genética , Predisposição Genética para Doença/genética , Quinases Ativadas por p21/genética , Cromossomos Humanos Par 3/genética , Adulto , Mutação de Sentido Incorreto/genética , Estudos de Casos e Controles , Estudos de Associação Genética , População do Leste Asiático
2.
Transl Psychiatry ; 14(1): 236, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830862

RESUMO

Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.


Assuntos
Glicoproteínas , Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Proteínas do Tecido Nervoso , Neurônios , Humanos , Diferenciação Celular/genética , Variações do Número de Cópias de DNA , Deleção de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Mentais/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética
3.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806495

RESUMO

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Assuntos
Transtorno Bipolar , Temperatura Corporal , Caderinas , Modelos Animais de Doenças , Locomoção , Camundongos Knockout , Animais , Masculino , Camundongos , Comportamento Animal , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Caderinas/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Locomoção/genética , Camundongos Endogâmicos C57BL , Inibição Pré-Pulso/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Protocaderinas
4.
Transl Psychiatry ; 14(1): 138, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453903

RESUMO

Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag. We generated 3q29-del mice using genome editing technology and reevaluated common behavioral phenotypes. We next implanted Nano-tag in the abdominal cavity of mice for continuous measurements of long-time activity and body temperature. Our model mice exhibited weight loss similar to that of other mice reported previously. A general behavioral battery test in the model mice revealed phenotypes similar to those observed in mouse models of schizophrenia, including increased rearing frequency. Intraperitoneal implantation of Nano-tag, a miniature acceleration sensor, resulted in hypersensitive and rapid increases in the activity and body temperature of 3q29-del mice upon switching to lights-off condition. Similar to the 3q29-del mice reported previously, these mice are a promising model animals for schizophrenia. Successive quantitative analysis may provide results that could help in treating sleep disorders closely associated with neuropsychiatric disorders.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Humanos , Criança , Camundongos , Animais , Deficiências do Desenvolvimento/genética , Deleção Cromossômica , Variações do Número de Cópias de DNA , Temperatura Corporal , Deficiência Intelectual/genética , Modelos Animais de Doenças , Fenótipo
5.
Brain Behav Immun ; 118: 398-407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461957

RESUMO

Although oxytocin may provide a novel therapeutics for the core features of autism spectrum disorder (ASD), previous results regarding the efficacy of repeated or higher dose oxytocin are controversial, and the underlying mechanisms remain unclear. The current study is aimed to clarify whether repeated oxytocin alter plasma cytokine levels in relation to clinical changes of autism social core feature. Here we analyzed cytokine concentrations using comprehensive proteomics of plasmas of 207 adult males with high-functioning ASD collected from two independent multi-center large-scale randomized controlled trials (RCTs): Testing effects of 4-week intranasal administrations of TTA-121 (A novel oxytocin spray with enhanced bioavailability: 3U, 6U, 10U, or 20U/day) and placebo in the crossover discovery RCT; 48U/day Syntocinon or placebo in the parallel-group verification RCT. Among the successfully quantified 17 cytokines, 4 weeks TTA-121 6U (the peak dose for clinical effects) significantly elevated IL-7 (9.74, 95 % confidence interval [CI] 3.59 to 15.90, False discovery rate corrected P (PFDR) < 0.001), IL-9 (56.64, 20.46 to 92.82, PFDR < 0.001) and MIP-1b (18.27, 4.96 to 31.57, PFDR < 0.001) compared with placebo. Inverted U-shape dose-response relationships peaking at TTA-121 6U were consistently observed for all these cytokines (IL-7: P < 0.001; IL-9: P < 0.001; MIP-1b: P = 0.002). Increased IL-7 and IL-9 in participants with ASD after 4 weeks TTA-121 6U administration compared with placebo was verified in the confirmatory analyses in the dataset before crossover (PFDR < 0.001). Furthermore, the changes in all these cytokines during 4 weeks of TTA-121 10U administration revealed associations with changes in reciprocity score, the original primary outcome, observed during the same period (IL-7: Coefficient = -0.05, -0.10 to 0.003, P = 0.067; IL-9: -0.01, -0.02 to -0.003, P = 0.005; MIP-1b: -0.02, -0.04 to -0.007, P = 0.005). These findings provide the first evidence for a role of interaction between oxytocin and neuroinflammation in the change of ASD core social features, and support the potential role of this interaction as a novel therapeutic seed. Trial registration: UMIN000015264, NCT03466671/UMIN000031412.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Masculino , Humanos , Ocitocina , Transtorno Autístico/tratamento farmacológico , Citocinas , Interleucina-7 , Interleucina-9/uso terapêutico , Método Duplo-Cego , Transtorno do Espectro Autista/tratamento farmacológico , Administração Intranasal , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Neuropsychopharmacol Rep ; 44(1): 42-50, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37915257

RESUMO

AIM: The present study aimed to examine the association between copy number variations (CNVs) in parkin (PRKN) and schizophrenia (SCZ) and autism spectrum disorder (ASD) in a large case-control sample. METHOD: Array comparative genomic hybridization was performed on 3111 cases with SCZ, 1236 cases with ASD, and 2713 controls. We systematically prioritized likely pathogenic CNVs (LP-CNVs) in PRKN and examined their association with SCZ and ASD. RESULTS: In total, 3014 SCZ cases (96.9%), 1205 ASD cases (97.5%), and 2671 controls (98.5%) passed quality control. We found that monoallelic carriers of LP-CNVs in PRKN were common (70/6890, 1.02%) and were not at higher risk of SCZ (p = 0.29) or ASD (p = 0.72). We observed that the distribution pattern of LP-CNVs in the Japanese population was consistent with those in other populations. We also identified a patient diagnosed with SCZ and early-onset Parkinson's disease carrying biallelic pathogenic CNVs in PRKN. The absence of Parkinson's symptoms in 10 other monoallelic carriers of the same pathogenic CNV further reflects the lack of effect of monoallelic pathogenic variants in PRKN in the absence of a second hit. CONCLUSION: The present findings suggest that monoallelic CNVs in PRKN do not confer a significant risk for SCZ or ASD. However, further studies to investigate the association between biallelic CNVs in PRKN and SCZ and ASD are warranted.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Ubiquitina-Proteína Ligases/genética
7.
FEBS J ; 291(5): 945-964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037233

RESUMO

Indoleamine 2,3-dioxygenase 2 (IDO2) is an enzyme of the tryptophan-kynurenine pathway that is constitutively expressed in the brain. To provide insight into the physiological role of IDO2 in the brain, behavioral and neurochemical analyses in IDO2 knockout (KO) mice were performed. IDO2 KO mice showed stereotyped behavior, restricted interest and social deficits, traits that are associated with behavioral endophenotypes of autism spectrum disorder (ASD). IDO2 was colocalized immunohistochemically with tyrosine-hydroxylase-positive cells in dopaminergic neurons. In the striatum and amygdala of IDO2 KO mice, decreased dopamine turnover was associated with increased α-synuclein level. Correspondingly, levels of downstream dopamine D1 receptor signaling molecules such as brain-derived neurotrophic factor and c-Fos positive proteins were decreased. Furthermore, decreased abundance of ramified-type microglia resulted in increased dendritic spine density in the striatum of IDO2 KO mice. Both chemogenetic activation of dopaminergic neurons and treatment with methylphenidate, a dopamine reuptake inhibitor, ameliorated the ASD-like behavior of IDO2 KO mice. Sequencing analysis of exon regions in IDO2 from 309 ASD samples identified a rare canonical splice site variant in one ASD case. These results suggest that the IDO2 gene is, at least in part, a factor closely related to the development of psychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Dopamina , Neurônios Dopaminérgicos , Indolamina-Pirrol 2,3,-Dioxigenase/genética
8.
Nagoya J Med Sci ; 85(4): 682-690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38155616

RESUMO

The use of mesenchymal stem/stromal cells (MSCs) has attracted attention in the field of regenerative medicine based on their anti-inflammatory and tissue repair-promoting effects. Bone marrow is widely used as a source of MSCs; however, the performance of bone marrow (BM)-MSCs deteriorates as the cells age along with cell passaging. Recently, it has been reported that MSCs can be generated from induced pluripotent stem cells (iPSCs), which is expected to represent a new source of MSCs. However, few studies have investigated aging in iPSC-derived MSCs (iMSCs) and their functions. In this study, we investigated whether iMSCs overcome cellular senescence compared to that in BM-MSCs. Cellular senescence was quantitatively evaluated by staining iMSCs and BM-MSCs with fluorescein di-ß-D-galactopyranoside (FDG) and following flow cytometer analysis. The hepatocyte growth factor (HGF) concentration in the culture supernatant was also measured as a factor in the therapeutic efficacy of nephritis. The iMSCs did not reach their proliferation limit and their morphology did not change even after 10 passages. The FDG positivity of BM-MSCs increased with passaging, whereas that in iMSCs did not increase. The HGF concentration increased with passaging in iMSCs. In conclusion, our results suggest that iMSCs may be less susceptible to senescence than BM-MSCs and may be used in clinical applications.

9.
PLoS One ; 18(6): e0287646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352288

RESUMO

Human mentality develops with age and is altered in psychiatric disorders, though their underlying mechanism is unknown. In this study, we analyzed nanometer-scale three-dimensional structures of brain tissues of the anterior cingulate cortex from eight schizophrenia and eight control cases. The distribution profiles of neurite curvature of the control cases showed a trend depending on their age, resulting in an age-correlated decrease in the standard deviation of neurite curvature (Pearson's r = -0.80, p = 0.018). In contrast to the control cases, the schizophrenia cases deviate upward from this correlation, exhibiting a 60% higher neurite curvature compared with the controls (p = 7.8 × 10-4). The neurite curvature also showed a correlation with a hallucination score (Pearson's r = 0.80, p = 1.8 × 10-4), indicating that neurite structure is relevant to brain function. This report is based on our 3D analysis of human brain tissues over a decade and is unprecedented in terms of the number of cases. We suggest that neurite curvature plays a pivotal role in brain aging and can be used as a hallmark to exploit a novel treatment of schizophrenia.


Assuntos
Esquizofrenia , Humanos , Envelhecimento , Alucinações , Neuritos , Encéfalo
10.
Neuropsychopharmacol Rep ; 43(3): 462-466, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264739

RESUMO

BACKGROUND: Copy number variations (CNVs) have been implicated in psychiatric and neurodevelopmental disorders. Especially, 15q13.3 deletions are strongly associated with autism spectrum disorder (ASD), intellectual disability (ID), schizophrenia (SCZ), attention deficithyperactivity disorder (ADHD), and mood disorder. CASE PRESENTATION: We present two siblings with ASD. They had a father with bipolar disorder (BD). Patient 1 is a 21-year-old female with ASD and mild ID, who had language delay and repetitive behavior in childhood, social difficulties, and refused to go to school because of bullying. She was hospitalized in a psychiatric hospital several times. Patient 2 is a 19-year-old male with ASD and ADHD. He did not have developmental delay, but had social difficulties and impulsiveness, then refused to go to school because of bullying. He was treated by a psychiatrist for anxiety and disrupted sleep rhythms. Array comparative genomic hybridization was performed for the siblings and parents. 15q13.3 deletions were detected in the siblings and their healthy mothers. No other pathogenic CNVs were detected. We performed whole-genome sequencing of the family and identified 13 rare missense variants in brain-expressed genes, which may be responsible for the phenotypic differences between the siblings and their mother. CONCLUSIONS: This study shows incomplete penetrance and variable expressivity in 15q13.3 deletions. We detected second-hit variants that may explain the phenotypic differences within this family. In addition, detecting 15q13.3 deletions may lead to early diagnosis and a better prognosis with careful follow-up.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Irmãos , Variações do Número de Cópias de DNA , Hibridização Genômica Comparativa
11.
Hum Genet ; 142(7): 949-964, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198333

RESUMO

The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Cisteína/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Microcefalia/genética , Fenótipo , Zinco , Deficiência Intelectual/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genética
12.
Neuropsychopharmacol Rep ; 43(2): 267-271, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118905

RESUMO

BACKGROUND: Chromosome 16p13.11 duplication is a well-known genetic risk factor for schizophrenia (SCZ) (odds ratio = 1.84). However, no case reports focusing on patients with SCZ and 16p13.11 duplication have been published. Therefore, here, we report the detailed clinical cases of four patients with SCZ and 16p13.11 duplication who were identified in our previous whole-genome copy number variant (CNV) study. CASE PRESENTATION: In the four patients with SCZ and 16p13.11 duplication detected by array comparative genomic hybridization, one patient was found to have treatment-resistant SCZ and an additional pathogenic rare CNV. Two of the four patients in this study had environmental risk factors that may have been involved in the development of SCZ. CONCLUSIONS: The results of this case series suggest that a genetic cohort study would be useful for evaluating which genetic and environmental risk factors could better explain the variable expressivity of 16p13.11 duplication. Furthermore, this work could be useful for elucidating the pathophysiology of SCZ.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Hibridização Genômica Comparativa , Estudos de Coortes , Variações do Número de Cópias de DNA , Duplicação Cromossômica
13.
Eur J Hum Genet ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973392

RESUMO

Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.

14.
J Neurochem ; 165(2): 211-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807153

RESUMO

Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.


Assuntos
Transtorno do Espectro Autista , Dopamina , Animais , Camundongos , Cognição , Dopamina/metabolismo , Emoções , Glicoproteínas/metabolismo , Camundongos Knockout , Morfogênese
15.
J Hum Genet ; 68(3): 175-182, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35821406

RESUMO

Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único
19.
Psychiatry Clin Neurosci ; 76(12): 667-673, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36073611

RESUMO

AIM: The aims of the present study were: (i) to examine the association between schizophrenia (SCZ) and 47, XXY or 47, XXX in a large case-control sample; and (ii) to characterize the clinical features of patients with SCZ with these X chromosome aneuploidies. METHODS: To identify 47, XXY and 47, XXX, array comparative genomic hybridization (aCGH) was performed in 3188 patients with SCZ and 3586 controls. We examined the association between 47, XXY and 47, XXX and SCZ in males and females separately using exact conditional tests to control for platform effects. Clinical data were retrospectively examined for patients with SCZ with X chromosome aneuploidies. RESULTS: Of the analyzed samples, 3117 patients (97.8%) and 3519 controls (98.1%) passed our quality control. X chromosome aneuploidies were exclusively identified in patients: 47, XXY in seven patients (0.56%), 47, XXX in six patients (0.42%). Statistical analysis revealed a significant association between SCZ and 47, XXY (P = 0.028) and 47, XXX (P = 0.011). Phenotypic data were available from 12 patients. Treatment-resistance to antipsychotics and manic symptoms were observed in six patients each (four with 47, XXY and two with 47, XXX for both), respectively. Statistical analysis revealed that treatment-resistance to antipsychotics, mood stabilizer use, and manic symptoms were significantly more common in patients with 47, XXY than in male patients without pathogenic copy number variations. CONCLUSION: These findings indicate that both 47, XXY and 47, XXX are significantly associated with risk for SCZ. Patients with SCZ with 47, XXY may be characterized by treatment-resistance and manic symptoms.


Assuntos
Antipsicóticos , Esquizofrenia , Feminino , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Variações do Número de Cópias de DNA , Hibridização Genômica Comparativa , Estudos Retrospectivos , Aneuploidia , Cromossomo X
20.
Nagoya J Med Sci ; 84(2): 260-268, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35967956

RESUMO

A number of genomic mutations that are thought to be strongly involved in the development of schizophrenia (SCZ) and autism spectrum disorder (ASD) have been identified. Abnormalities involving oligodendrocytes have been reported in SCZ, and as a related gene, oligodendrocyte lineage transcription factor 2 (OLIG2) has been reported to be strongly associated with SCZ. In this study, based on the common disease-rare variant hypothesis, target sequencing of candidate genes was performed to identify rare mutations with a high effect size and the possibility that the identified mutations may increase the risks of SCZ and ASD in the Japanese population. In this study, the exon region of OLIG2 was targeted; 370 patients with SCZ and 192 with ASD were subjected to next-generation sequencing. As a result, one rare missense mutation (A33T) was detected. We used the Sanger method to validate this missense mutation with a low frequency (<1%), and then carried out a genetic association analysis involving 3299 unrelated individuals (1447 with SCZ, 380 with ASD, and 1472 healthy controls) to clarify whether A33T was associated with SCZ or ASD. A33T was not found in either case group, and in only one control. We did not find evidence that p.A33T is involved in the onset of ASD or SCZ; however, associations with this variant need to be evaluated in larger samples to confirm our results.


Assuntos
Transtorno do Espectro Autista , Fator de Transcrição 2 de Oligodendrócitos , Esquizofrenia , Transtorno do Espectro Autista/genética , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...