Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 6834-6843, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328882

RESUMO

Here we present a study on the solid state properties of trans tetra-ortho-bromo azobenzene (4Br-Azo). Two distinct crystal polymorphs were identified: the α-phase and ß-phase. Notably, only the ß-phase exhibited an extraordinary photosalient effect (jumping/breaking) upon exposure to a wide range of visible light. Powder X-ray diffraction and Raman spectroscopy revealed that the ß-phase is metastable and can transition to the α-phase when subjected to specific stimuli like heat and light. Furthermore, single crystal X-ray diffraction and density functional theory calculations highlighted the significance of a highly strained conformer in the ß-phase, showing that the metastability of the phase potentially arises from relieving this strain. This metastability leads to a light induced phase transition, which appears to be the cause of the photosalient effect in these crystals. Interestingly the polymorphism at the core of 4Br-Azo's dynamic behavior is based on different arrangements of halogen based intermolecular interactions. It is possible that continued study on combining visible light capturing chromophores with halogen interaction-based polymorphism will lead to the discovery of even more visible light controlled dynamic crystal materials.

2.
Mater Horiz ; 11(6): 1495-1501, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226904

RESUMO

The control of droplet motion is a significant challenge, as there has been no simple method for effective manipulation. Utilizing light for the control of droplets offers a promising solution due to its non-contact nature and high degree of controllability. In this study, we present our findings on the translational motion of pre-photomelted droplets composed of azobenzene derivatives on a glass surface when exposed to UV and visible light sources from different directions. These droplets exhibited directional and continuous motion upon light irradiation and this motion was size-dependent. Only droplets with diameters less than 10 µm moved with a maximum velocity of 300 µm min-1. In addition, the direction of the movement was controllable by the direction of the light. The motion is driven by a change in contact angle, where UV or visible light switched the contact angle to approximately 50° or 35°, respectively. In addition, these droplets were also found to be capable carriers for fluorescent quantum dots. As such, droplets composed of photoresponsive molecules offer unique opportunities for designing novel light-driven open-surface microfluidic systems.

3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139291

RESUMO

The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.


Assuntos
Óxido de Zinco , Raios X , Compostos Azo/química , Rotação
4.
Opt Express ; 29(14): 22593-22602, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34266018

RESUMO

This study demonstrates a new approach for suppressing the self-absorption effect in single-pulse laser-induced breakdown spectroscopy (LIBS) using unusual parallel laser irradiation. A nanosecond Nd:YAG laser with a wavelength of 1064 nm was fired parallel to and focused at a very close distance of 1 mm to the sample surface. The experiment was carried out in air at atmospheric pressure. In this configuration, the sample was ablated by a shockwave generated from the air breakdown plasma formed near the sample surface. Under this condition, we successfully obtained spectra of the resonance emission line for high concentration K (K I 766.4 nm and K I 769.9 nm) that are free from self-reversal and weakly affected by the self-absorption. Furthermore, the quantitative analysis results for the element K showed that a linear calibration curve over a wide concentration range could be achieved, which indicates the effectiveness of this technique in reducing the self-absorption effect and improving the analytical performance of ordinary single-pulse LIBS.

5.
Sci Rep ; 10(1): 13278, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764554

RESUMO

Self-absorption, which is known to severely disturb identification of the emission peak intensity in emission-based spectroscopy, was first studied using ordinary single pulse laser-induced breakdown spectroscopy (LIBS). It was found that severe self-absorption, with an evident self-reversal, occurs in the resonance emission lines of high concentration Na, K, and Al, and thus it is impossible to obtain the linear calibration curve required for quantitative analysis. To overcome this problem, we introduce a double pulse orthogonal technique in which the first laser is fired in a parallel orientation at a varied distance of 2-6 mm from the sample surface. It is well known that the strong shock wave generated by this laser irradiation temporarily creates a vacuum-like condition immediately in front of the sample surface. This action is followed by a second laser irradiation oriented perpendicular to the sample surface. The sample ablated by the second laser irradiation expands following the shockwave excitation process in the vacuum-like air atmosphere created by the first laser. The obtained spectra of the resonance emission lines of high concentration Na, K, and Al are free from the self-reversal and weakly affected by the self-absorption effect. A linear calibration curve that intercepts near zero point for K element over a wide concentration range is also demonstrated in this study. This simple modification is considered notably helpful in overcoming the self-absorption that occurs in ordinary single pulse atmospheric pressure LIBS.

6.
Anal Chem ; 91(12): 7864-7870, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31132266

RESUMO

This study is aimed at elucidating the physical processes responsible for the excellent spectral qualities in terms of full width at half-maximum (fwhm) and signal-to-noise (S/N) ratio shown in a special double pulse laser-induced spectroscopy. Apart from the use of atmospheric He ambient gas, the achievement is due to the first laser for generating He gas plasma and the subsequent use of the second laser pulse for target ablation, in opposite order of the two-laser operations in conventional double pulse LIBS. This setup allows adjustments of the many experimental parameters to yield the optimal condition resulting in 0.03 nm fwhm and around 1000× S/N ratio of Cu I 521.8 nm and far surpasses the spectral qualities obtained by other techniques. This is obtained by allowing the crucial separation of the target plasma from the He gas plasma and thereby enabling the He-assisted excitation (HAE) to play its full and unique role of nonthermal excitation, taking advantage of metastable excited He atoms in the He plasma and the Penning-like energy transfer process. This excellent performance is further verified by its successful application analysis of Cr in low alloy steel samples, with the presence of smooth linear calibration lines, signifying the absence of the self-absorption effect well-known in ordinary LIBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...