Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Autism Res ; 8(5): 593-608, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25720351

RESUMO

Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. In general it remains unclear, what biological factors lead to changes in the brains of autistic individuals. A considerable number of transcriptome analyses have been performed in attempts to address this question, but their findings lack a clear consensus. As a result, each of these individual studies has not led to any significant advance in understanding the autistic phenotype as a whole. Here, we report a meta-analysis of more than 1000 microarrays across twelve independent studies on expression changes in ASD compared to unaffected individuals, in both blood and brain tissues. We identified a number of known and novel genes that are consistently differentially expressed across three studies of the brain (71 samples in total). A subset of the highly ranked genes is suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult to identify, despite individual studies tending to exhibit larger effects than the brain studies. Our results are the strongest evidence to date of a common transcriptome signature in the brains of individuals with ASD.


Assuntos
Transtorno do Espectro Autista/genética , Expressão Gênica/genética , Humanos , Análise em Microsséries/estatística & dados numéricos
2.
BMC Genomics ; 14: 129, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442263

RESUMO

BACKGROUND: Understanding the genetic basis of diseases is key to the development of better diagnoses and treatments. Unfortunately, only a small fraction of the existing data linking genes to phenotypes is available through online public resources and, when available, it is scattered across multiple access tools. DESCRIPTION: Neurocarta is a knowledgebase that consolidates information on genes and phenotypes across multiple resources and allows tracking and exploring of the associations. The system enables automatic and manual curation of evidence supporting each association, as well as user-enabled entry of their own annotations. Phenotypes are recorded using controlled vocabularies such as the Disease Ontology to facilitate computational inference and linking to external data sources. The gene-to-phenotype associations are filtered by stringent criteria to focus on the annotations most likely to be relevant. Neurocarta is constantly growing and currently holds more than 30,000 lines of evidence linking over 7,000 genes to 2,000 different phenotypes. CONCLUSIONS: Neurocarta is a one-stop shop for researchers looking for candidate genes for any disorder of interest. In Neurocarta, they can review the evidence linking genes to phenotypes and filter out the evidence they're not interested in. In addition, researchers can enter their own annotations from their experiments and analyze them in the context of existing public annotations. Neurocarta's in-depth annotation of neurodevelopmental disorders makes it a unique resource for neuroscientists working on brain development.


Assuntos
Bases de Dados Genéticas , Doença/genética , Neurociências/métodos , Animais , Mineração de Dados , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Ratos , Terminologia como Assunto , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...