Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15790-15801, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847355

RESUMO

Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.


Assuntos
Estruturas Metalorgânicas , Camundongos Nus , Estruturas Metalorgânicas/química , Humanos , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Anticorpos/química , Anticorpos/imunologia , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Células HeLa , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Feminino
2.
Sci Rep ; 14(1): 12048, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802364

RESUMO

Landslides pose a growing concern worldwide, emphasizing the need for accurate prediction and assessment to mitigate their impact. Recent advancements in remote sensing technology offer unprecedented datasets at various scales, yet practical applications demand further case studies to fully integrate these technologies into landslide analysis. This study presents a case study approach to fully leverage variety of multi-source remote sensing technologies for analyzing the characteristics of a landslide. The selected case is a landslide with a long runout debris flow that occurred in Gokseong County, South Korea, on August 7, 2020. The chosen multi-source technologies encompass digital photogrammetry using RGB and multi-spectral imageries, 3D point clouds acquired by light detection and ranging (LiDAR) mounted on an unmanned aerial vehicle (UAV), and satellite interferometric synthetic aperture radar (InSAR). The satellite InSAR analysis identifies the initial displacement, triggered by rainfall and later transforming into a debris flow. The utilization of digital photogrammetry, employing UAV-RGB and multi-spectral image data, precisely delineates the extent affected by the landslide. The landslide encompassed a runout distance of 678 m, featuring an initiation zone characterized by an average slope of 35°. Notably, the eroded and deposited areas measured 2.55 × 104 m2 and 1.72 × 104 m2, respectively. The acquired UAV-LiDAR data further reveal the eroded and deposited landslide volumes approximately measuring 5.60 × 104 m3 and 1.58 × 104 m3, respectively. This study contributes a valuable dataset on a rainfall-induced landslide with a long runout debris flow, underscoring the effectiveness of multi-source remote sensing technology in monitoring and comprehending complex landslide events.

3.
Nat Commun ; 15(1): 4025, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740804

RESUMO

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Assuntos
Inflamassomos , Proteínas de Membrana , Oxirredução , Piroptose , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Catálise , Estresse do Retículo Endoplasmático , Peróxido de Hidrogênio/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Radical Hidroxila/metabolismo , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Animais , Processos Fotoquímicos , Dobramento de Proteína , Caspases/metabolismo , Gasderminas
4.
ACS Appl Mater Interfaces ; 16(13): 16086-16095, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506502

RESUMO

Solar water oxidation is a crucial process in light-driven reductive synthesis, providing electrons and protons for various chemical reductions. Despite advances in light-harvesting materials and cocatalysts, achieving high efficiency and stability remains challenging. In this study, we present a simple yet effective strategy for immobilizing natural photosystems (PS) made of abundant and inexpensive elements, using amine-rich polyethylenimine (PEI) hydrogels, to fabricate organic/inorganic hybrid photoanodes. Natural PS II extracted from spinach was successfully immobilized on inverse opal TiO2 photoanodes in the presence of PEI hydrogels, leading to greatly enhanced solar water oxidation activity. Photoelectrochemical (PEC) analyses reveal that PS II can be immobilized in specific orientations through electrostatic interactions between the positively charged amine groups of PEI and the negatively charged stromal side of PS II. This specific orientation ensures efficient photogenerated charge separation and suppresses undesired side reactions such as the production of reactive oxygen species. Our study provides an effective immobilization platform and sheds light on the potential utilization of PS II in PEC water oxidation.

5.
Heliyon ; 9(9): e20225, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810106

RESUMO

High-resolution topographic information of landslide-prone areas plays an important role in accurate prediction and characterization of potential landslides and mitigation of landslides-associated hazards. This study presents an advanced geomorphological surveying system that integrates the light detection and ranging (LiDAR) with an unmanned aerial vehicle (UAV), a multi-rotor aerial vehicle in specific, for prediction, monitoring and forensic analysis of landslides, and for maintenance of debris-flow barriers. The test-flight over a vegetated area demonstrates that the integrated UAV-LiDAR system can provide high-resolution, three-dimensional (3D) LiDAR point clouds below canopy and vegetation in forest environments, overcoming the limitation of aerial photogrammetry and terrestrial LiDAR platforms. An algorithm is suggested to delineate the topographic information from the acquired 3D LiDAR point clouds, and the accuracy and performance of the developed UAV-LiDAR system are examined through field demonstration. Finally, two field demonstrations are presented: the forensic analysis of the recent Gokseong landslide event, and the sediment deposition monitoring for debris-flow barrier maintenance in South Korea. The developed surveying system is expected to contribute to geomorphological field surveys in vegetated, forest environments, particularly in a site that is not easily accessible.

6.
ACS Appl Mater Interfaces ; 15(34): 40378-40384, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594234

RESUMO

Dye-sensitized photorechargeable batteries (DSPBs) have recently gained attention for realizing energy recycling systems under dim light conditions. However, their performance under high storage efficiency (i.e., the capacity charged within a limited time) for practical application remains to be evaluated. Herein, we varied the lithium (Li)-ion concentration, which plays a dual role as energy charging and storage components, to obtain the optimized energy density of DSPBs. Electrochemical studies showed that the Li-ion concentration strongly affected the resistance characteristics of DSPBs. In particular, increasing the Li-ion concentration improved the output capacity and decreased the output voltage. Consequently, the energy density of the finely optimized DSPB improved from 8.73 to 12.64 mWh/cm3 when irradiated by a 1000-lx indoor light-emitting-diode lamp. These findings on the effects of Li-ion concentrations in electrolytes on the performance of DSPBs represent a step forward in realizing the practical application of DSPBs.

7.
Phys Chem Chem Phys ; 25(16): 11577-11585, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039577

RESUMO

The power conversion efficiency (PCE) of polymer solar cells (PSCs) has recently reached >19% through the development of photoactive materials, particularly non-fullerene acceptors. Interfacial layers (ILs) have been another essential factor in optimizing device charge extraction. In this study, we propose a series of ILs, in which ionic iridium(III) (Ir(III)) complexes of different alkali metal cations (Li+, Na+, and K+) enhance the charge collection efficiency between zinc oxide and active layers through an induced internal electric field. The anionic coordinate sphere and counter-cations of the Ir(III) complexes are distributed according to the operating voltage of the PSCs, causing electric dipoles that enhance the internal electric field and charge collection efficiency. Ion species migration in the ILs is confirmed using electrochemical impedance spectroscopy. The PCE of the PM6:Y6-based PSCs was improved from 14.0% to 15.6% by introducing an IL (Ir-K+). Furthermore, the stability of PSCs containing ionic Ir(III) complexes is enhanced significantly under ultraviolet (UV) light and AM 1.5 G one-sun irradiation owing to the intense UV absorption capacity and photo durability of the ILs. A device containing the Ir(III) complex-based ILs retained ∼60% of its initial PCE after UV irradiation, whereas the control device retained only ∼20%.

8.
Chemistry ; 29(34): e202300594, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36974937

RESUMO

Redox-responsive nanocarriers using disulfides or thiols have received considerable attention owing to the higher levels of glutathione (GSH) in cancer cells than those in extracellular fluids. Nevertheless, the normal-to-cancer-cell selectivity of these nanocarriers has not yet been clarified. Nanocarriers exhibit different cytotoxicities depending on the morphologies they adopt under the redox-active conditions typically existing in cancerous cells. Therefore, not only GSH levels but also reactive oxygen species (ROS) levels and other complex cancerous cell conditions must be considered for the development of smart drug delivery systems. In this article, we review the structural design of redox-responsive polymers that exhibit different morphological changes in environments akin to cancerous cells (e. g., GSH- and ROS-abundant conditions). In addition, we propose a molecular design for the spatiotemporal control of nanocarrier morphology depending on the levels of both GSH and ROS upon photoirradiation to increase the cytotoxicity difference between normal and cancer cells.


Assuntos
Nanopartículas , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Oxirredução , Glutationa/química , Portadores de Fármacos/química
9.
Angew Chem Int Ed Engl ; 61(42): e202210623, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36008369

RESUMO

Reversible thiol-disulfide exchange chemistry is of particular interest in drug delivery systems. However, high levels of glutathione (GSH) in cancer cells are hard to distinguish from GSH in normal cells, resulting in unmanageable cytotoxic drug release. This study investigates the spatiotemporally-controlled irreversible degradation of Ir-based photosensitizer (TIr3)-encapsulating nanogels (IrNG) through the hyperoxidation of resulting intracellular thiols using reactive oxygen species (ROS). A highly cytotoxic TIr3 was stably encapsulated within IrNG through hydrophobic interactions and reversible crosslinking between its disulfide bonds and thiols in the absence of light, resulting in high biocompatibility under normal cellular conditions. However, upon photoirradiation, TIr3 generated high levels of ROS, irreversibly oxidizing the thiols to induce electrostatic repulsion between the polymer molecules, resulting in the TIr3 release and induction of cancer cell apoptosis.


Assuntos
Glutationa , Fármacos Fotossensibilizantes , Dissulfetos/química , Glutationa/química , Nanogéis , Fármacos Fotossensibilizantes/farmacologia , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/química
10.
JACS Au ; 2(4): 933-942, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557761

RESUMO

Reactive oxygen species have drawn attention owing to their strong oxidation ability. In particular, the singlet oxygen (1O2) produced by energy transfer is the predominant species for controlling oxidation reactions efficiently. However, conventional 1O2 generators, which rely on enhanced energy transfer, frequently suffer from poor solubility, low stability, and low biocompatibility. Herein, we introduce a hyperbranched aliphatic polyaminoglycerol (hPAG) as a 1O2 generator, which relies on spin-flip-based electron transfer. The coexistence of a lone pair electron on the nitrogen atom and a hydrogen-bonding donor (the protonated form of nitrogen and hydroxyl group) affords proximity between hPAG and O2. Subsequent direct electron transfer after photo-irradiation induces hPAG•+-O2 •- formation, and the following spin-flip process generates 1O2. The spin-flip-based electron transfer pathway is analyzed by a series of photophysical, electrochemical, and computational studies. The 1O2 generator, hPAG, is successfully employed in photodynamic therapy and as an antimicrobial reagent.

11.
Anal Chem ; 94(6): 2966-2972, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104115

RESUMO

The dye distribution within a photo-electrode is a key parameter in determining the performances of dye-sensitized photon-to-electron conversion devices, such as dye-sensitized solar cells (DSSCs). A traditional, depth profiling investigation by destructive means including cross-sectional sampling is unsuitable for large quality control applications in manufacturing processes. Therefore, a non-destructive monitoring of the dye depth profile is required, which is the first step toward a non-destructive evaluation of the internal degradation of the device in the field. Here, we present a conceptual demonstration of the ability to monitor the dye depth profile within the light active layer of DSSCs by non-destructive means with high chemical specificity using a recently developed non-destructive/non-invasive Raman method, micro-spatially offset Raman spectroscopy (micro-SORS). Micro-SORS is able to probe through turbid materials, providing the molecular identification of compounds located under the surface, without the need of resorting to a cross-sectional analysis. The study was performed on the photo-electrode of DSSCs. This represents the first demonstration of the micro-SORS concept in the solar cell area as well as, more generally, the application of micro-SORS to the thinnest layer to date. A sample set has been prepared with varying concentrations of the dye and the thickness of the matrix consisting of a titanium dioxide layer. The results showed that micro-SORS can unequivocally discriminate between the homogeneous and inhomogeneous dye depth profiles. Moreover, micro-SORS outcomes have been compared with the results obtained with destructive time-of-flight secondary ion mass spectrometry measurements. The results of the two techniques are in good agreement, confirming the reliability of micro-SORS analysis. Therefore, this study is expected to pave the way for establishing a wider and more effective monitoring capability in this important field.


Assuntos
Corantes , Estudos Transversais , Eletrodos , Reprodutibilidade dos Testes , Titânio
12.
ACS Appl Mater Interfaces ; 13(51): 61598-61609, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34928128

RESUMO

Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and cross-linked microporous structures. However, the fabrication of nano- and microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution. Using the SNS, the scalable fabrication of microporous and redox-active CMP films can be achieved via the oxidative C-C coupling polymerization of the monomer precursor. Intriguingly, the ultrasonic frequency used during SNS strongly affects the synthesis of the CMP films, resulting in an approximately 30% improvement in reaction yields and ca. 1.3-1.7-times enhanced surface areas (336-542 m2/g) at a high ultrasonic frequency of 180 kHz compared to those at 120 kHz. Furthermore, we prepare highly conductive, three-dimensional porous electrodes [CMP/carbon nanotube (CNT)] by a layer-by-layer sequential deposition of CMP films and CNTs via SNS. Finally, an asymmetric supercapacitor comprising the CMP/CNT cathode and carbon anode shows a high specific capacitance of 477 F/g at 1 A/g with a wide working potential window (0-1.4 V) and robust cycling stability, exhibiting 94.4% retention after 10,000 cycles.

13.
Nanoscale Horiz ; 6(5): 379-385, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33720243

RESUMO

Efficient and selective production of CH4 through the CO2 reduction reaction (CO2RR) is a challenging task due to the high amount of energy consumption and various reaction pathways. Here, we report the synthesis of Zn-based polyoxometalate (ZnPOM) and its application in the photocatalytic CO2RR. Unlike conventional Zn-based catalysts that produce CO, ZnPOM can selectively catalyze the production of CH4 in the presence of an Ir-based photosensitizer (TIr3) through the photocatalytic CO2RR. Photophysical and computation analyses suggest that selective photocatalytic production of CH4 using ZnPOM and TIr3 can be attributed to (1) the exceptionally fast transfer of photogenerated electrons from TIr3 to ZnPOM through the strong molecular interactions between them and (2) effective transfer of electrons from ZnPOM to *CO intermediates due to significant hybridization of their molecular orbitals. This study provides insights into the design of novel CO2RR catalysts for CH4 production beyond the limitations in conventional studies that focus on Cu-based materials.

14.
Nat Commun ; 12(1): 26, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397915

RESUMO

Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations.


Assuntos
Irídio/farmacologia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Morte Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Transferência de Energia , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução/efeitos dos fármacos , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viscosidade
15.
Environ Sci Technol ; 54(23): 15355-15365, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186009

RESUMO

This study explored the feasibility of biosurfactant amendment in modifying the interfacial characteristics of carbon dioxide (CO2) with rock minerals under high-pressure conditions for GCS. In particular, while varying the CO2 phase and the rock mineral, we quantitatively examined the production of biosurfactants by Bacillus subtilis and their effects on interfacial tension (IFT) and wettability in CO2-brine-mineral systems. The results demonstrated that surfactin produced by B. subtilis caused the reduction of CO2-brine IFT and modified the wettability of both quartz and calcite minerals to be more CO2-wet. The production yield of surfactin was substantially greater with the calcite mineral than with the quartz mineral. The calcite played the role of a pH buffer, consistently maintaining the brine pH above 6. By contrast, an acidic condition in CO2-brine-quartz systems caused the precipitation of surfactin, and hence surfactin lost its ability as a surface-active agent. Meanwhile, the CO2-driven mineral dissolution and precipitation in CO2-brine-calcite systems under a non-equilibrium system altered the solid substrates, produced surface roughness, and caused contact angle variations. These results provide unique experimental data on biosurfactant-mediated interfacial properties and wettability in GCS-relevant conditions, which support the exploitation of in situ biosurfactant production for biosurfactant-aided CO2 injection.


Assuntos
Dióxido de Carbono , Sais , Minerais , Molhabilidade
16.
ACS Appl Mater Interfaces ; 12(21): 24479-24487, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32368903

RESUMO

Long-term stability of the solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) layers formed on anodes and cathodes is imperative to mitigate the interfacial degradation of electrodes and enhance the cycle life of lithium-ion batteries (LIBs). However, the SEI on the anode and CEI on the cathode are vulnerable to the reactive species of PF5 and HF produced by the decomposition and hydrolysis of the conventional LiPF6 electrolyte in a battery inevitably containing a trace amount of water. Here, we report a new class of cyclic carbonate-based electrolyte additives to preserve the integrity of SEI and CEI in LIBs. This new class of additives is designed and synthesized by an ecofriendly approach that involves fixing CO2 with functional epoxides bearing various reactive side chains. It was found that the cyclic carbonates of 3-(1-ethoxyethoxy)-1,2-propylene carbonate and 3-trimethoxysilylpropyloxy-1,2-propylene carbonate, possessing high capability for the stabilization of Lewis-acidic PF5, exhibit a capacity retention of 79.0% after 1000 cycles, which is superior to that of the pristine electrolyte of 54.7%. Moreover, TMSPC has HF-scavenging capability, which, along with PF5 stabilization, results in enhanced rate capability of commercial LiNi0.6Mn0.2Co0.2O2 (NCM622)/graphite full cells, posing a significant potential for high-energy-density LIBs with long cycle stability.

17.
Proc Natl Acad Sci U S A ; 117(22): 12109-12120, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414919

RESUMO

The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteoma/análise , Proteínas de Ligação a Tacrolimo/metabolismo , Cálcio/metabolismo , Humanos , Biogênese de Organelas , Proteoma/metabolismo , Transdução de Sinais
18.
ACS Appl Mater Interfaces ; 12(16): 18813-18822, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233452

RESUMO

The development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity. Because of the hexagonal microcolumnar array, whose contact area changes according to the mechanical stimuli applied, the interlock-optimized geometry shows an enhanced sensitivity. This produces an improved ability to discriminate the different mechanical stimuli that might be applied. Moreover, we show that our e-skins can detect, discriminate, and monitor various intensities of different external and internal vibrations, which is a useful asset for various applications, such as seismology, smart phones, wearable human skins (voice monitoring), etc.


Assuntos
Nanotubos de Carbono/química , Ultrassom/métodos , Dispositivos Eletrônicos Vestíveis , Eletrônica , Desenho de Equipamento , Humanos , Fenômenos Mecânicos , Smartphone , Voz/fisiologia
19.
Chem Sci ; 10(28): 6855-6862, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31391908

RESUMO

Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-ß (Aß) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aß peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aß isoforms, Aß40 and Aß42, as well as the production of toxic Aß species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.

20.
ACS Appl Mater Interfaces ; 11(31): 27512-27520, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293157

RESUMO

Metal-organic framework (MOF) nanoparticles with high porosity and greater tunability have emerged as new drug delivery vehicles. However, premature drug release still remains a challenge in the MOF delivery system. Here, we report an enzyme-responsive, polymer-coated MOF gatekeeper system using hyaluronic acid (HA) and PCN-224 nanoMOF. The external surface of nanoMOF can be stably covered by HA through multivalent coordination bonding between the Zr cluster and carboxylic acid of HA, which acts as a gatekeeper. HA allows selective accumulation of drug carriers in CD44 overexpressed cancer cells and enzyme-responsive drug release in the cancer cell environment. In particular, inherent characteristics of PCN-224, which is used as a drug carrier, facilitates the transfer of the drug to cancer cells more stably and allows photodynamic therapy. This HA-PCN system enables a dual chemo and photodynamic therapy to enhance the cancer therapy effect.


Assuntos
Doxorrubicina , Portadores de Fármacos , Ácido Hialurônico , Estruturas Metalorgânicas , Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...