Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190765, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550952

RESUMO

Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Comunicação Celular , Cognição , Planárias/fisiologia , Regeneração , Animais , Ciência Cognitiva , Fenômenos Eletrofisiológicos/fisiologia , Modelos Neurológicos
2.
Bioelectricity ; 2(1): 7-13, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471832

RESUMO

Selective serotonin reuptake inhibitor (SSRI) drugs, targeting serotonin transport, are widely used. A puzzling and biomedically important phenomenon concerns the persistent sexual dysfunction following SSRI use seen in some patients. What could be the mechanism of a persistent physiological state brought on by a transient exposure to serotonin transport blockers? In this study, we briefly review the clinical facts concerning this side effect of serotonin reuptake inhibitors and suggest a possible mechanism. Bioelectric circuits (among neural or non-neural cells) could persistently maintain alterations of bioelectric cell properties (resting potential), resulting in long-term changes in electrophysiology and signaling. We present new data revealing this phenomenon in planarian flatworms, in which brief SSRI exposures induce long-lasting changes in resting potential profile. We also briefly review recent data linking neurotransmitter signaling to developmental bioelectrics. Further study of tissue bioelectric memory could enable the design of ionoceutical interventions to counteract side effects of SSRIs and similar drugs.

3.
PLoS Comput Biol ; 15(4): e1006904, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30990801

RESUMO

Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.


Assuntos
Padronização Corporal/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal/genética , Biologia Computacional , Cadeias de Markov , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Planárias/anatomia & histologia , Planárias/genética , Interferência de RNA , Regeneração/genética , Transdução de Sinais
4.
Biophys J ; 116(5): 948-961, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799071

RESUMO

Axial patterning during planarian regeneration relies on a transcriptional circuit that confers distinct positional information on the two ends of an amputated fragment. The earliest known elements of this system begin demarcating differences between anterior and posterior wounds by 6 h postamputation. However, it is still unknown what upstream events break the axial symmetry, allowing a mutual repressor system to establish invariant, distinct biochemical states at the anterior and posterior ends. Here, we show that bioelectric signaling at 3 h is crucial for the formation of proper anterior-posterior polarity in planaria. Briefly manipulating the endogenous bioelectric state by depolarizing the injured tissue during the first 3 h of regeneration alters gene expression by 6 h postamputation and leads to a double-headed phenotype upon regeneration despite confirmed washout of ionophores from tissue. These data reveal a primary functional role for resting membrane potential taking place within the first 3 h after injury and kick-starting the downstream pattern of events that elaborate anatomy over the following 10 days. We propose a simple model of molecular-genetic mechanisms to explain how physiological events taking place immediately after injury regulate the spatial distribution of downstream gene expression and anatomy of regenerating planaria.


Assuntos
Fenômenos Eletrofisiológicos , Planárias/citologia , Planárias/fisiologia , Regeneração , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Potenciais da Membrana , Planárias/genética , Planárias/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...