Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(15): 13117-13146, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39073853

RESUMO

Antagonism of the human adenosine A3 receptor (hA3R) has potential therapeutic application. Alchemical relative binding free energy calculations of K18 and K32 suggested that the combination of a 3-(2,6-dichlorophenyl)-isoxazolyl group with 2-pyridinyl at the ends of a carbonyloxycarboximidamide group should improve hA3R affinity. Of the 25 new analogues synthesized, 37 and 74 showed improved hA3R affinity compared to K18 (and K32). This was further improved through the addition of a bromine group to the 2-pyridinyl at the 5-position, generating compound 39. Alchemical relative binding free energy calculations, mutagenesis studies and MD simulations supported the compounds' binding pattern while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, so highlighting the importance of rigidification of the carbonyloxycarboximidamide moiety. MD simulations highlighted the importance of rigidification of the carbonyloxycarboximidamide, while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, which was supported through mutagenesis studies 39 also selectively antagonized endogenously expressed hA3R in nonsmall cell lung carcinoma cells, while pharmacokinetic studies indicated low toxicity enabling in vivo evaluation. We therefore suggest that 39 has potential for further development as a high-affinity hA3R antagonist.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Receptor A3 de Adenosina , Humanos , Receptor A3 de Adenosina/metabolismo , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade , Animais , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/síntese química , Simulação de Dinâmica Molecular , Ratos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química
2.
Br J Pharmacol ; 181(15): 2478-2491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38583945

RESUMO

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is a potent vasodilator. While its signalling is assumed to be mediated via increases in cAMP, this study focused on elucidating the actual intracellular signalling pathways involved in CGRP-induced relaxation of human isolated coronary arteries (HCA). EXPERIMENTAL APPROACH: HCA were obtained from heart valve donors (27 M, 25 F, age 54 ± 2 years). Concentration-response curves to human α-CGRP or forskolin were constructed in HCA segments, incubated with different inhibitors of intracellular signalling pathways, and intracellular cAMP levels were measured with and without stimulation. RESULTS: Adenylyl cyclase (AC) inhibitors SQ22536 + DDA and MDL-12330A, and PKA inhibitors Rp-8-Br-cAMPs and H89, did not inhibit CGRP-induced relaxation of HCA, nor did the guanylyl cyclase inhibitor ODQ, PKG inhibitor KT5823, EPAC1/2 inhibitor ESI09, potassium channel blockers TRAM-34 + apamin, iberiotoxin or glibenclamide, or the Gαq inhibitor YM-254890. Phosphodiesterase inhibitors induced a concentration-dependent decrease in the response to KCl but did not potentiate relaxation to CGRP. Relaxation to forskolin was not blocked by PKA or AC inhibitors, although AC inhibitors significantly inhibited the increase in cAMP. Inhibition of Gßγ subunits using gallein significantly inhibited the relaxation to CGRP in human coronary arteries. CONCLUSION: While CGRP signalling is generally assumed to act via cAMP, the CGRP-induced vasodilation in HCA was not inhibited by targeting this intracellular signalling pathway at different levels. Instead, inhibition of Gßγ subunits did inhibit the relaxation to CGRP, suggesting a different mechanism of CGRP-induced relaxation than generally believed.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Vasos Coronários , AMP Cíclico , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Vasodilatação , Humanos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Masculino , Pessoa de Meia-Idade , AMP Cíclico/metabolismo , Vasodilatação/efeitos dos fármacos , Feminino , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas In Vitro , Vasodilatadores/farmacologia
3.
Nat Commun ; 15(1): 1334, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351103

RESUMO

G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of ß1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from ß1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of ß1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ligação Proteica
4.
J Phys Chem B ; 128(4): 914-936, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236582

RESUMO

A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol-1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol-1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.


Assuntos
Furilfuramida , Simulação de Dinâmica Molecular , Humanos , Ligantes , Fluxo de Trabalho , Termodinâmica , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Desenho de Fármacos , Adenosina
5.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37442808

RESUMO

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Agregação Plaquetária , Humanos , Difosfato de Adenosina/metabolismo , Plaquetas/fisiologia , Transdução de Sinais , Inflamação/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Ativação Plaquetária
6.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
7.
J Med Chem ; 65(21): 14864-14890, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36270633

RESUMO

A series of benzyloxy and phenoxy derivatives of the adenosine receptor agonists N6-cyclopentyl adenosine (CPA) and N6-cyclopentyl 5'-N-ethylcarboxamidoadenosine (CP-NECA) were synthesized, and their potency and selectivity were assessed. We observed that the most potent were the compounds with a halogen in the meta position on the aromatic ring of the benzyloxy- or phenoxycyclopentyl substituent. In general, the NECA-based compounds displayed greater A1R selectivity than the adenosine-based compounds, with N6-2-(3-bromobenzyloxy)cyclopentyl-NECA and N6-2-(3-methoxyphenoxy)cyclopentyl-NECA showing ∼1500-fold improved A1R selectivity compared to NECA. In addition, we quantified the compounds' affinity and kinetics of binding at both human and rat A1R using a NanoBRET binding assay and found that the halogen substituent in the benzyloxy- or phenoxycyclopentyl moiety seems to confer high affinity for the A1R. Molecular modeling studies suggested a hydrophobic subpocket as contributing to the A1R selectivity displayed. We believe that the identified selective potent A1R agonists are valuable tool compounds for adenosine receptor research.


Assuntos
Agonistas do Receptor Purinérgico P1 , Receptores Purinérgicos P1 , Animais , Humanos , Ratos , Adenosina/química , Adenosina-5'-(N-etilcarboxamida) , Halogênios , Relação Estrutura-Atividade
8.
Nat Commun ; 13(1): 5509, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127350

RESUMO

Microbial production of cannabinoids promises to provide a consistent, cheaper, and more sustainable supply of these important therapeutic molecules. However, scaling production to compete with traditional plant-based sources is challenging. Our ability to make strain variants greatly exceeds our capacity to screen and identify high producers, creating a bottleneck in metabolic engineering efforts. Here, we present a yeast-based biosensor for detecting microbially produced Δ9-tetrahydrocannabinol (THC) to increase throughput and lower the cost of screening. We port five human cannabinoid G protein-coupled receptors (GPCRs) into yeast, showing the cannabinoid type 2 receptor, CB2R, can couple to the yeast pheromone response pathway and report on the concentration of a variety of cannabinoids over a wide dynamic and operational range. We demonstrate that our cannabinoid biosensor can detect THC from microbial cell culture and use this as a tool for measuring relative production yields from a library of Δ9-tetrahydrocannabinol acid synthase (THCAS) mutants.


Assuntos
Técnicas Biossensoriais , Canabinoides , Canabinoides/metabolismo , Dronabinol/metabolismo , Humanos , Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fluxo de Trabalho
9.
J Med Chem ; 65(19): 13305-13327, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173355

RESUMO

Drugs targeting adenosine receptors (AR) can provide treatment for diseases. We report the identification of 7-(phenylamino)-pyrazolo[3,4-c]pyridines L2-L10, A15, and A17 as low-micromolar to low-nanomolar A1R/A3R dual antagonists, with 3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity at both receptors with a long residence time of binding, as determined using a NanoBRET-based assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding area of A1R in molecular dynamics (MD) simulations, and we selected the most plausible orientation based on the agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug design purposes, the mutation of L2506.51 to alanine increased the binding affinity of A17 at A1R. We explored the structure-activity relationships against A1R using alchemical binding free energy calculations with the thermodynamic integration coupled with the MD simulation (TI/MD) method, applied on the whole G-protein-coupled receptor-membrane system, which showed a good agreement (r = 0.73) between calculated and experimental relative binding free energies.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Receptor A3 de Adenosina , Antagonistas do Receptor A3 de Adenosina/química , Alanina , Mutagênese , Antagonistas de Receptores Purinérgicos P1/química , Piridinas/química , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Relação Estrutura-Atividade
10.
Nat Commun ; 13(1): 4150, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851064

RESUMO

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of ß-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.


Assuntos
Analgesia , Depressão , Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1
11.
ACS Med Chem Lett ; 13(6): 923-934, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707146

RESUMO

Here we describe the design and synthesis of pyrazolo[3,4-d]pyridazines as adenosine receptor (AR) ligands. We demonstrate that the introduction of a 3-phenyl group, together with a 7-benzylamino and 1-methyl group at the pyrazolopyridazine scaffold, generated the antagonist compound 10b, which displayed 21 nM affinity and a residence time of ∼60 min, for the human A1R, 55 nM affinity and a residence time of ∼73 min, for the human A3R and 1.7 µΜ affinity for the human A2BR while not being toxic. Strikingly, the 2-methyl analog of 10b, 15b, had no significant affinity. Docking calculations and molecular dynamics simulations of the ligands inside the orthosteric binding area suggested that the 2-methyl group in 15b hinders the formation of hydrogen bonding interactions with N6.55 which are considered critical for the stabilization inside the orthosteric binding cavity. We, therefore, demonstrate that 10a is a novel scaffold for the development of high affinity AR ligands. From the mutagenesis experiments the biggest effect was observed for the Y2717.46A mutation which caused an ∼10-fold reduction in the binding affinity of 10b.

12.
Front Physiol ; 13: 840763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422711

RESUMO

Signalling of the calcitonin-like receptor (CLR) is multifaceted, due to its interaction with receptor activity modifying proteins (RAMPs), and three endogenous peptide agonists. Previous studies have focused on the bias of G protein signalling mediated by the receptor and receptor internalisation of the CLR-RAMP complex has been assumed to follow the same pattern as other Class B1 G Protein-Coupled Receptors (GPCRs). Here we sought to measure desensitisation of the three CLR-RAMP complexes in response to the three peptide agonists, through the measurement of ß-arrestin recruitment and internalisation. We then delved further into the mechanism of desensitisation through modulation of ß-arrestin activity and the expression of GPCR kinases (GRKs), a key component of homologous GPCR desensitisation. First, we have shown that CLR-RAMP1 is capable of potently recruiting ß-arrestin1 and 2, subsequently undergoing rapid endocytosis, and that CLR-RAMP2 and -RAMP3 also utilise these pathways, although to a lesser extent. Following this we have shown that agonist-dependent internalisation of CLR is ß-arrestin dependent, but not required for full agonism. Overexpression of GRK2-6 was then found to decrease receptor signalling, due to an agonist-independent reduction in surface expression of the CLR-RAMP complex. These results represent the first systematic analysis of the importance of ß-arrestins and GRKs in CLR-RAMP signal transduction and pave the way for further investigation regarding other Class B1 GPCRs.

13.
Methods Cell Biol ; 166: 1-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752328

RESUMO

The importance of receptor-ligand binding kinetics has often been overlooked during drug development, however, over the past decade it has become increasingly clear that a better understanding of the kinetic parameters is crucial for fully evaluating pharmacological effects of a drug. One technique enabling us to measure the real-time kinetics of receptor-ligand interactions in live cells is NanoBRET, which is a bioluminescence resonance energy transfer (BRET)-based assay that uses Nano luciferase. The assay described here allows the measurement of kinetic parameters of a fluorescent ligand and an unlabeled ligand binding to the same place at the receptor, as well as monitoring the effects of another compound like an allosteric modulator on the ligand binding.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Células HEK293 , Humanos , Cinética , Ligantes , Luciferases/metabolismo , Ligação Proteica
14.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575827

RESUMO

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic agents, thereby providing a new combination therapy for this challenging malignancy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Sinergismo Farmacológico , Glioblastoma , Humanos , Pirazóis/farmacologia , Quinolinas/farmacologia
15.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359681

RESUMO

We have used three established human glioblastoma (GBM) cell lines-U87MG, A172, and T98G-as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.

16.
Biochem Soc Trans ; 49(4): 1695-1709, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282836

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Animais , Humanos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Terminologia como Assunto
17.
Commun Biol ; 4(1): 776, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163006

RESUMO

Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can "re-route" the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling.


Assuntos
Adrenomedulina/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Hormônios Peptídicos/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Proteína Semelhante a Receptor de Calcitonina/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Receptores de Adrenomedulina/agonistas , Receptores de Adrenomedulina/análise , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia
18.
Sci Rep ; 11(1): 10418, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001961

RESUMO

Cryopreservation offers the potential to increase the availability of pancreatic islets for treatment of diabetic patients. However, current protocols, which use dimethyl sulfoxide (DMSO), lead to poor cryosurvival of islets. We demonstrate that equilibration of mouse islets with small molecules in aqueous solutions can be accelerated from > 24 to 6 h by increasing incubation temperature to 37 °C. We utilize this finding to demonstrate that current viability staining protocols are inaccurate and to develop a novel cryopreservation method combining DMSO with trehalose pre-incubation to achieve improved cryosurvival. This protocol resulted in improved ATP/ADP ratios and peptide secretion from ß-cells, preserved cAMP response, and a gene expression profile consistent with improved cryoprotection. Our findings have potential to increase the availability of islets for transplantation and to inform the design of cryopreservation protocols for other multicellular aggregates, including organoids and bioengineered tissues.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacocinética , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas , Animais , Sobrevivência Celular , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/induzido quimicamente , Humanos , Masculino , Camundongos , Modelos Animais , Cultura Primária de Células , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
19.
J Chem Inf Model ; 61(4): 2001-2015, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33779168

RESUMO

Despite being a target for about one-third of approved drugs, G protein-coupled receptors (GPCRs) still represent a tremendous reservoir for therapeutic strategies against diseases. For example, several cardiovascular and central nervous system conditions could benefit from clinical agents that activate the adenosine 1 receptor (A1R); however, the pursuit of A1R agonists for clinical use is usually impeded by both on- and off-target side effects. One of the possible strategies to overcome this issue is the development of positive allosteric modulators (PAMs) capable of selectively enhancing the effect of a specific receptor subtype and triggering functional selectivity (a phenomenon also referred to as bias). Intriguingly, besides enforcing the effect of agonists upon binding to an allosteric site, most of the A1R PAMs display intrinsic partial agonism and orthosteric competition with antagonists. To rationalize this behavior, we simulated the binding of the prototypical PAMs PD81723 and VCP171, the full-agonist NECA, the antagonist 13B, and the bitopic agonist VCP746. We propose that a single PAM can bind several A1R sites rather than a unique allosteric pocket, reconciling the structure-activity relationship and the mutagenesis results.


Assuntos
Receptor A1 de Adenosina , Receptores Acoplados a Proteínas G , Regulação Alostérica , Sítio Alostérico , Relação Estrutura-Atividade
20.
J Cheminform ; 13(1): 17, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658076

RESUMO

Enhanced/prolonged cAMP signalling has been suggested as a suppressor of cancer proliferation. Interestingly, two key modulators that elevate cAMP, the A2A receptor (A2AR) and phosphodiesterase 10A (PDE10A), are differentially co-expressed in various types of non-small lung cancer (NSCLC) cell-lines. Thus, finding dual-target compounds, which are simultaneously agonists at the A2AR whilst also inhibiting PDE10A, could be a novel anti-proliferative approach. Using ligand- and structure-based modelling combined with MD simulations (which identified Val84 displacement as a novel conformational descriptor of A2AR activation), a series of known PDE10A inhibitors were shown to dock to the orthosteric site of the A2AR. Subsequent in-vitro analysis confirmed that these compounds bind to the A2AR and exhibit dual-activity at both the A2AR and PDE10A. Furthermore, many of the compounds exhibited promising anti-proliferative effects upon NSCLC cell-lines, which directly correlated with the expression of both PDE10A and the A2AR. Thus, we propose a structure-based methodology, which has been validated in in-vitro binding and functional assays, and demonstrated a promising therapeutic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...