Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894105

RESUMO

Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Imagens de Fantasmas , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído , Ácido Láctico/química , Ácido Láctico/metabolismo
2.
Sci Rep ; 14(1): 2811, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307928

RESUMO

Magnetic Resonance Imaging (MRI) is a major medical imaging modality, which is non-invasive and provides unique soft tissue contrast without ionizing radiation. The successful completion of MRI exams critically depends on patient compliance, and, thus patient comfort. The design, appearance and usability of local MRI radiofrequency (RF) coils potentially influences the patients' perception of the exam. However, systematic investigations and empirical evidence for these aspects are missing. A questionnaire specifically evaluating the impact of RF coils on patient comfort in MRI would be a valuable addition to clinical studies comparing the performance of novel flexible RF coils with standard rigid coils. This paper describes the development of such a questionnaire in the scope of a citizen science (CS) initiative conducted with a group of students at the upper secondary school level. In this work, the CS initiative is presented in the format of a case report and its impact on scientific projects and the students' education is outlined. The resulting questionnaire is made available in German and English so as to be directly applicable by researchers working on the clinical evaluation of novel RF coils or the comfort evaluation of specific hardware setups in general.


Assuntos
Ciência do Cidadão , Humanos , Ondas de Rádio , Imageamento por Ressonância Magnética/métodos , Radiação Ionizante , Percepção , Imagens de Fantasmas , Desenho de Equipamento
3.
Magn Reson Med ; 90(5): 2130-2143, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379467

RESUMO

PURPOSE: Conventional breast MRI is performed in the prone position with a dedicated coil. This allows high-resolution images without breast motion, but the patient position is inconsistent with that of other breast imaging modalities or interventions. Supine breast MRI may be an interesting alternative, but respiratory motion becomes an issue. Motion correction methods have typically been performed offline, for instance, the corrected images were not directly accessible from the scanner console. In this work, we seek to show the feasibility of a fast, online, motion-corrected reconstruction integrated into the clinical workflow. METHODS: Fully sampled T2 -weighted (T2 w) and accelerated T1 -weighted (T1 w) breast supine MR images were acquired during free-breathing and were reconstructed using a non-rigid motion correction technique (generalized reconstruction by inversion of coupled systems). Online reconstruction was implemented using a dedicated system combining the MR raw data and respiratory signals from an external motion sensor. Reconstruction parameters were optimized on a parallel computing platform, and image quality was assessed by objective metrics and by radiologist scoring. RESULTS: Online reconstruction time was 2 to 2.5 min. The metrics and the scores related to the motion artifacts significantly improved for both T2 w and T1 w sequences. The overall quality of T2 w images was approaching that of the prone images, whereas the quality of T1 w images remained significantly lower. CONCLUSION: The proposed online algorithm allows a noticeable reduction of motion artifacts and an improvement of the diagnostic quality for supine breast imaging with a clinically acceptable reconstruction time. These findings serve as a starting point for further development aimed at improving the quality of T1 w images.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Artefatos , Processamento de Imagem Assistida por Computador/métodos
4.
Z Med Phys ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37258388

RESUMO

Flexible form-fitting radiofrequency coils provide high signal-to-noise ratio (SNR) for magnetic resonance imaging (MRI), and in array configuration large anatomical areas of interest can be covered. We propose a modular system - "ModFlex"- of flexible lightweight 4-channel coaxial coil arrays for 3 T MRI. We investigated the performance difference between commercial reference coils and 8- and 16-channel ModFlex receive-only array systems. In vivo, six anatomical targets in four regions of interest - the neck, the ankle, the spine and the hip - were imaged with the novel coil array system. The versatility of ModFlex and the robustness of the coil characteristics for different use cases is demonstrated. We measured an SNR gain for 4 out of 6 and similar SNR for 2 out of 6 anatomical target regions as compared to commercial reference coils. Parallel imaging capabilities are comparable to standard coils in hip and neck imaging, but ModFlex outperforms standard coils in ankle and spine imaging. High SNR combined with high acceleration possibilities enables faster imaging workflows and/or high-resolution MR acquisitions. The coil's versatility is beneficial for use cases with varying subject sizes and could improve patient comfort.

5.
Invest Radiol ; 58(11): 799-810, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227137

RESUMO

BACKGROUND: Breast cancer, the most common malignant cancer in women worldwide, is typically diagnosed by x-ray mammography, which is an unpleasant procedure, has low sensitivity in women with dense breasts, and involves ionizing radiation. Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality and works without ionizing radiation, but is currently constrained to the prone imaging position due to suboptimal hardware, therefore hampering the clinical workflow. OBJECTIVES: The aim of this work is to improve image quality in breast MRI, to simplify the clinical workflow, shorten measurement time, and achieve consistency in breast shape with other procedures such as ultrasound, surgery, and radiation therapy. MATERIALS AND METHODS: To this end, we propose "panoramic breast MRI"-an approach combining a wearable radiofrequency coil for 3 T breast MRI (the "BraCoil"), acquisition in the supine position, and a panoramic visualization of the images. We demonstrate the potential of panoramic breast MRI in a pilot study on 12 healthy volunteers and 1 patient, and compare it to the state of the art. RESULTS: With the BraCoil, we demonstrate up to 3-fold signal-to-noise ratio compared with clinical standard coils and acceleration factors up to 6 × 4. Panoramic visualization of supine breast images reduces the number of slices to be viewed by a factor of 2-4. CONCLUSIONS: Panoramic breast MRI allows for high-quality diagnostic imaging and facilitated correlation to other diagnostic and interventional procedures. The developed wearable radiofrequency coil in combination with dedicated image processing has the potential to improve patient comfort while enabling more time-efficient breast MRI compared with clinical coils.


Assuntos
Neoplasias da Mama , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Projetos Piloto , Mama/diagnóstico por imagem , Mama/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia
6.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750363

RESUMO

Comparative neuroimaging allows for the identification of similarities and differences between species. It provides an important and promising avenue, to answer questions about the evolutionary origins of the brain´s organization, in terms of both structure and function. Dog functional magnetic resonance imaging (fMRI) has recently become one particularly promising and increasingly used approach to study brain function and coevolution. In dog neuroimaging, image acquisition has so far been mostly performed with coils originally developed for use in human MRI. Since such coils have been tailored to human anatomy, their sensitivity and data quality is likely not optimal for dog MRI. Therefore, we developed a multichannel receive coil (K9 coil, read "canine") tailored for high-resolution functional imaging in canines, optimized for dog cranial anatomy. In this paper we report structural (n = 9) as well as functional imaging data (resting-state, n = 6; simple visual paradigm, n = 9) collected with the K9 coil in comparison to reference data collected with a human knee coil. Our results show that the K9 coil significantly outperforms the human knee coil, improving the signal-to-noise ratio (SNR) across the imaging modalities. We noted increases of roughly 45% signal-to-noise in the structural and functional domain. In terms of translation to fMRI data collected in a visual flickering checkerboard paradigm, group-level analyses show that the K9 coil performs better than the knee coil as well. These findings demonstrate how hardware improvements may be instrumental in driving data quality, and thus, quality of imaging results, for dog-human comparative neuroimaging.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Cães , Humanos , Animais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Razão Sinal-Ruído , Encéfalo/diagnóstico por imagem
7.
Tomography ; 8(5): 2347-2359, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287795

RESUMO

Anatomically accurate models of a human finger can be useful in simulating various disorders. In order to have potential clinical value, such models need to include a large number of tissue types, identified by an experienced professional, and should be versatile enough to be readily tailored to specific pathologies. Magnetic resonance images were acquired at ultrahigh magnetic field (7 T) with a radio-frequency coil specially designed for finger imaging. Segmentation was carried out under the supervision of an experienced radiologist to accurately capture various tissue types (TTs). The final segmented model of the human index finger had a spatial resolution of 0.2 mm and included 6,809,600 voxels. In total, 15 TTs were identified: subcutis, Pacinian corpuscle, nerve, vein, artery, tendon, collateral ligament, volar plate, pulley A4, bone, cartilage, synovial cavity, joint capsule, epidermis and dermis. The model was applied to the conditions of arthritic joint, ruptured tendon and variations in the geometry of a finger. High-resolution magnetic resonance images along with careful segmentation proved useful in the construction of an anatomically accurate model of the human index finger. An example illustrating the utility of the model in biomedical applications is shown. As the model includes a number of tissue types, it may present a solid foundation for future simulations of various musculoskeletal disease processes in human joints.


Assuntos
Imageamento por Ressonância Magnética , Traumatismos dos Tendões , Humanos , Imageamento por Ressonância Magnética/métodos , Dedos , Ondas de Rádio , Tendões/diagnóstico por imagem , Tendões/patologia , Traumatismos dos Tendões/patologia
8.
Med Phys ; 49(4): 2366-2372, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224747

RESUMO

BACKGROUND: MR-based methods for attenuation correction (AC) in PET/MRI either neglect attenuation of bone, or use MR-signal derived information about bone, which leads to a bias in quantification of tracer uptake in PET. In a previous study, we presented a PET/MRI specific MR coil with an integrated transmission source (TX) system allowing for direct measurement of attenuation. In phantom measurements, this system successfully reproduced the linear attenuation coefficient of water. PURPOSE: The purpose of this study is to validate the TX system in a clinical setting using animals and to show its applicability compared to standard clinical methods. METHODS: As test subject, a 15-kg piglet was injected with 53 MBq of 18F-NaF. The µ-map obtained with the TX system and the reconstructed activity distribution were compared to four established AC methods: a Dixon sequence, an ultra-short echo time (UTE) sequence, a CT scan, and a 511 keV transmission scan using a Siemens ECAT EXACT HR+ as the reference. The PET/MRI measurements were performed on a Siemens Biograph mMR to obtain the µ-map using the TX system as well as the Dixon and UTE sequence directly followed by the CT and ECAT measurements. RESULTS: The reconstructed activity distribution using the TX system for AC showed similar results compared to the reference (<5% difference in hot regions) and outperformed the MR-based methods as implemented in the PET/MRI system (<10% difference in hot regions). However, the additional hardware of the TX system adds complexity to the acquisition process. CONCLUSION: Our porcine study demonstrates the feasibility of post-injection transmission scans using the developed TX system in a clinical setting. This makes it a useful tool for PET/MRI in cases where transmission information is needed for AC. Potential applications are studies using larger animals where state-of-the-art atlas-based or artificial intelligence AC methods are not available.


Assuntos
Inteligência Artificial , Imagem Multimodal , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Suínos
10.
IEEE Trans Med Imaging ; 40(4): 1267-1278, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439836

RESUMO

Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
11.
Biomed Opt Express ; 10(12): 6555-6568, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853416

RESUMO

Rheumatoid arthritis causes changes in the optical properties of tissues in the joints, which could be detected using spectral imaging. This has the potential for development of low cost, non-contact method for early detection of the disease. In this work, hyperspectral imaging system was used to obtain 24 images of proximal interphalangeal joints of 12 healthy volunteers. A large inter-subject variability was observed, but still an increase in transmittance in the spectral range of 600 nm - 950 nm could be associated to the joint in all images. The results of experiments were compared to detailed simulations of light propagation trough tissue. For the simulations, voxelized 3D models of unaffected and inflamed human joints with realistic tissue distributions were constructed from an in-vivo MRI scan of a healthy human finger. The simulated model of healthy finger successfully reproduced the experimental data, while the affected models indicated that the inflammation introduces detectable differences in the spectral and spatial features. The results were used to guide the design of a dedicated imaging system for detection of rheumatoid arthritis, that will be used in an upcoming clinical study.

12.
Radiologe ; 59(Suppl 1): 40-45, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31321466

RESUMO

BACKGROUND: Increasing numbers of patients with active implantable medical devices (AIMDs) require magnetic resonance (MR) examinations. The manufacturers are continuing to improve the MR compatibility of their AIMDs. To this end, a variety of measurement methods and numerical simulations are used to evaluate the risks associated with magnetic resonance imaging (MRI). OBJECTIVE: In this article, test methods used to investigate interactions between AIMDs with radio frequency fields and time-varying magnetic gradient fields are reviewed. MATERIALS AND METHODS: A literature review of known test methods for radio frequency and gradient field exposure of AIMDs with leads, in particular for neurostimulators, cochlear implants, and implanted infusion pumps, is presented. The state of the art and promising methods are discussed. RESULTS: ISO/TS 10974 describes the design of high frequency and gradient injection setups to test conductive materials. A large number of sensor designs have been published to measure the induced voltages and currents through radio frequency and gradient fields and for monitoring AIMDs during MR examinations in in vitro tests. CONCLUSION: The test methods should be planned to be as conservative as possible to cover the worst case scenario. However, in vitro measurements and computer simulation are far from being able to cover all possible configurations in their complexity and uniqueness. For safer MR examinations, current research recommends in vivo testing prior to MR, parallel radiofrequency transmission techniques, and new sequences with reduced energy input in the presence of AIMDs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Próteses e Implantes , Implantes Cocleares , Simulação por Computador , Humanos , Campos Magnéticos , Marca-Passo Artificial , Segurança do Paciente , Ondas de Rádio , Processamento de Sinais Assistido por Computador
13.
Sensors (Basel) ; 19(15)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357545

RESUMO

The goal of this work is to further improve positron emission tomography (PET) attenuation correction and magnetic resonance (MR) sensitivity for head and neck applications of PET/MR. A dedicated 24-channel receive-only array, fully-integrated with a hydraulic system to move a transmission source helically around the patient and radiofrequency (RF) coil array, is designed, implemented, and evaluated. The device enables the calculation of attenuation coefficients from PET measurements at 511 keV including the RF coil and the particular patient. The RF coil design is PET-optimized by minimizing photon attenuation from coil components and housing. The functionality of the presented device is successfully demonstrated by calculating the attenuation map of a water bottle based on PET transmission measurements; results are in excellent agreement with reference values. It is shown that the device itself has marginal influence on the static magnetic field B0 and the radiofrequency transmit field B1 of the 3T PET/MR system. Furthermore, the developed RF array is shown to outperform a standard commercial 16-channel head and neck coil in terms of signal-to-noise ratio (SNR) and parallel imaging performance. In conclusion, the presented hardware enables accurate calculation of attenuation maps for PET/MR systems while improving the SNR of corresponding MR images in a single device without degrading the B0 and B1 homogeneity of the scanner.


Assuntos
Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagem Multimodal , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
14.
Radiologe ; 59(10): 869-874, 2019 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-31190100

RESUMO

BACKGROUND: Increasing numbers of patients with active implantable medical devices (AIMDs) require magnetic resonance (MR) examinations. The manufacturers are continuing to improve the MR compatibility of their AIMDs. To this end, a variety of measurement methods and numerical simulations are used to evaluate the risks associated with magnetic resonance imaging (MRI). OBJECTIVE: In this article, test methods used to investigate interactions between AIMDs with radio frequency fields and time-varying magnetic gradient fields are reviewed. MATERIALS AND METHODS: A literature review of known test methods for radio frequency and gradient field exposure of AIMDs with leads, in particular for neurostimulators, cochlear implants, and implanted infusion pumps, is presented. The state of the art and promising methods are discussed. RESULTS: ISO/TS 10974 describes the design of high frequency and gradient injection setups to test conductive materials. A large number of sensor designs have been published to measure the induced voltages and currents through radio frequency and gradient fields and for monitoring AIMDs during MR examinations in in vitro tests. CONCLUSION: The test methods should be planned to be as conservative as possible to cover the worst case scenario. However, in vitro measurements and computer simulation are far from being able to cover all possible configurations in their complexity and uniqueness. For safer MR examinations, current research recommends in vivo testing prior to MR, parallel radiofrequency transmission techniques, and new sequences with reduced energy input in the presence of AIMDs.


Assuntos
Implantes Cocleares , Campos Magnéticos , Imageamento por Ressonância Magnética , Próteses e Implantes , Simulação por Computador , Humanos , Espectroscopia de Ressonância Magnética
15.
PLoS One ; 13(11): e0206963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383832

RESUMO

PURPOSE: The purpose of this work is the design, implementation and evaluation of a mechanically flexible receive-only coil array for magnetic resonance imaging (MRI) at 3 T that can be applied to various target organs and provides high parallel imaging performance. METHODS: A 23-channel array was designed based on a rigid-flex printed circuit board (PCB). The flexible multi-layer part contains the copper traces forming the coil elements. The rigid part of the PCB houses the solder joints and lumped elements. The coil housing consists of rigid caps mounted above the rigid parts. Adhesive PTFE sheets cover all flexible parts. The developed array was tested on the bench as well as in phantom and in vivo MRI experiments employing parallel imaging acceleration factors up to six. RESULTS: Efficient mutual decoupling between receive elements and detuning between receive array and body coil was achieved. An increased signal-to-noise ratio in comparison to commercial reference coils is demonstrated, especially in regions close to the developed array and for high parallel imaging acceleration factors. Exemplary in vivo images of head, ankle, knee, shoulder and hand are presented. CONCLUSION: Based on high sensitivity close to the array and low g-factors, this flexible coil is well suited for studies of occipital and temporal cortex, as well as musculoskeletal targets like knee, ankle, elbow and wrist.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Articulações/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Imagens de Fantasmas
16.
J Magn Reson ; 296: 47-59, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205313

RESUMO

A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Simulação por Computador , Campos Eletromagnéticos , Coração/diagnóstico por imagem , Humanos , Aumento da Imagem , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Tronco/diagnóstico por imagem
17.
Sci Rep ; 8(1): 6211, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670177

RESUMO

13C magnetic resonance spectroscopy is a viable, non-invasive method to study cell metabolism in skeletal muscles. However, MR sensitivity of 13C is inherently low, which can be overcome by applying a higher static magnetic field strength together with radiofrequency coil arrays instead of single loop coils or large volume coils, and 1H decoupling, which leads to a simplified spectral pattern. 1H-decoupled 13C-MRS requires RF coils which support both, 1H and 13C, Larmor frequencies with sufficient electromagnetic isolation between the pathways of the two frequencies. We present the development, evaluation, and first in vivo measurement with a 7 T 3-channel 13C and 4-channel 1H transceiver array optimized for 1H-decoupled 13C-MRS in the posterior human calf muscles. To ensure minimal cross-coupling between 13C and 1H arrays, several strategies were combined: mutual magnetic flux was minimized by coil geometry, two LCC traps were inserted into each 13C element, and band-pass and low-pass filters were integrated along the signal pathways. The developed coil array was successfully tested in phantom and in vivo MR experiments, showing a simplified spectral pattern and increase in signal-to-noise ratio of approximately a factor 2 between non-decoupled and 1H-decoupled spectra in a glucose phantom and the human calf muscle.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Músculo Esquelético/química , Espectroscopia de Prótons por Ressonância Magnética , Ondas de Rádio , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Campos Eletromagnéticos , Fenômenos Eletromagnéticos , Glicogênio/análise , Glicogênio/química , Humanos , Imagens de Fantasmas , Espectroscopia de Prótons por Ressonância Magnética/métodos
18.
NMR Biomed ; 31(6): e3905, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29578260

RESUMO

Exercise studies investigating the metabolic response of calf muscles using 31 P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time-resolved multivoxel 31 P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(∼40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end-exercise PCr depletions in gastrocnemius medialis (R2 =0.8) and soleus (R2 =0.53). PCr recovery times and end-exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31 P MRS during muscle exercise and recovery, and the findings should be used in future study design.


Assuntos
Exercício Físico/fisiologia , Articulação do Joelho/fisiologia , Espectroscopia de Ressonância Magnética , Fósforo/química , Amplitude de Movimento Articular/fisiologia , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Modelos Lineares , Masculino , Oxirredução , Fosfocreatina/metabolismo
19.
Magn Reson Med ; 79(1): 588-592, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28295563

RESUMO

PURPOSE: To demonstrate a dedicated setup for ultrahigh resolution MR imaging of the human finger in vivo. METHODS: A radiofrequency coil was designed for optimized signal homogeneity and sensitivity in the finger at ultrahigh magnetic field strength (7 T), providing high measurement sensitivity. Imaging sequences (2D turbo-spin echo (TSE) and 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE)) were adapted for high spatial resolution and good contrast of different tissues in the finger, while keeping acquisition time below 10 minutes. Data was postprocessed to display finger structures in three dimensions. RESULTS: 3D MPRAGE data with isotropic resolution of 200 µm, along with 2D TSE images with in-plane resolutions of 58 × 78 µm2 and 100 × 97 µm2 , allowed clear identification of various anatomical features such as bone and bone marrow, tendons and annular ligaments, cartilage, arteries and veins, nerves, and Pacinian corpuscles. CONCLUSION: Using this dedicated finger coil at 7 T, together with adapted acquisition sequences, it is possible to depict the internal structures of the human finger in vivo within patient-compatible measurement time. It may serve as a tool for diagnosis and treatment monitoring in pathologies ranging from inflammatory or erosive joint diseases to injuries of tendons and ligaments to nervous or vascular disorders in the finger. Magn Reson Med 79:588-592, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Dedos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética , Modelos Anatômicos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...