Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39111311

RESUMO

H5N1 is an avian influenza virus that causes respiratory disease in birds and several land and sea mammals. The recent outbreak in the United States, including infection of dairy workers, has increased the concern around potential transmission and spread. We asked virologists, epidemiologists, and public health experts what the most urgent questions and action points are at this stage of the outbreak.

2.
Nat Commun ; 15(1): 5025, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871701

RESUMO

Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.


Assuntos
Furões , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H1N2 , Influenza Humana , Infecções por Orthomyxoviridae , Pandemias , Animais , Furões/virologia , Humanos , Suínos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/sangue , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/sangue , Feminino , Eliminação de Partículas Virais , Masculino , Adulto , Replicação Viral
3.
medRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826283

RESUMO

Spillover of highly pathogenic avian H5N1 into the cattle population poses a risk to humans through the close contact with farm workers. High viral loads of influenza viruses in the unpasteurized milk of infected lactating cows has the potential to contaminate equipment within milking parlors and create fomites for transmission to dairy workers. Cattle H5N1 and human 2009 H1N1 pandemic influenza viruses were found to remain infectious on surfaces commonly found in milking equipment materials for a few hours. The data presented here provide a compelling case for the risk of contaminated surfaces generated during milking to facilitate transmission of H5N1 from cattle-to-cattle and to dairy farm workers.

4.
Emerg Infect Dis ; 30(8): 1721-1723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914418

RESUMO

Examining the persistence of highly pathogenic avian influenza A(H5N1) from cattle and human influenza A(H1N1)pdm09 pandemic viruses in unpasteurized milk revealed that both remain infectious on milking equipment materials for several hours. Those findings highlight the risk for H5N1 virus transmission to humans from contaminated surfaces during the milking process.


Assuntos
Indústria de Laticínios , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Leite , Animais , Leite/virologia , Bovinos , Humanos , Indústria de Laticínios/instrumentação , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia
5.
J R Soc Interface ; 21(215): 18, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38920060

RESUMO

The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.


Assuntos
Aerossóis , Inativação de Vírus , Humanos , Concentração de Íons de Hidrogênio , Umidade , Temperatura , Tamanho da Partícula , Vírion
7.
Appl Environ Microbiol ; 90(2): e0201023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193683

RESUMO

Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Animais , Humanos , Umidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Saliva , Vírus da Influenza A Subtipo H3N2/fisiologia , Estações do Ano , Furões , Muco , Aerossóis
8.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...