Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38828869

RESUMO

BACKGROUND: Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors. AIMS: We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately. METHODS: Purified and characterized pyrazoles have been analyzed for in-vivo analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies. RESULTS: The ADME profile of synthesized compounds was found to be satisfactory. CONCLUSION: The synthesized compounds can serve as lead for further drug designing.


Assuntos
Analgésicos , Anti-Inflamatórios , Simulação de Acoplamento Molecular , Pirazóis , Pirazóis/farmacologia , Pirazóis/química , Animais , Analgésicos/farmacologia , Analgésicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Masculino , Camundongos , Relação Estrutura-Atividade , Edema/tratamento farmacológico , Edema/induzido quimicamente , Humanos , Ratos , Dor/tratamento farmacológico , Ratos Wistar
2.
Adv Bioinformatics ; 2014: 903246, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114678

RESUMO

The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in Pinus roxburghii against all possible targets for diabetes through molecular docking and to develop a pharmacophore model for the active target. The process of molecular docking involves study of different bonding modes of one ligand with active cavities of target receptors protein tyrosine phosphatase 1-beta (PTP-1ß), dipeptidyl peptidase-IV (DPP-IV), aldose reductase (AR), and insulin receptor (IR) with help of docking software Molegro virtual docker (MVD). From the results of docking score values on different receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related secondary complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...