Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(9): 096801, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506179

RESUMO

Charge transport processes at interfaces play a crucial role in many processes. Here, the first soft x-ray second harmonic generation (SXR SHG) interfacial spectrum of a buried interface (boron-Parylene N) is reported. SXR SHG shows distinct spectral features that are not observed in x-ray absorption spectra, demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations indicates a boron-organic separation distance of 1.9 Å, with changes of less than 1 Å resulting in easily detectable SXR SHG spectral shifts (ca. hundreds of milli-electron volts).

3.
J Chem Phys ; 144(19): 191103, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27208929

RESUMO

While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

4.
J Chem Phys ; 143(8): 084503, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328852

RESUMO

Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3 (-) and NO2 (-). The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

5.
Phys Chem Chem Phys ; 16(43): 23568-75, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25175723

RESUMO

Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li(+) ion in this model electrolyte. By generating linear combinations of the computed spectra of Li(+)-associating and free PC molecules and comparing to the experimental spectrum, we find a Li(+)-solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.

6.
J Chem Phys ; 140(23): 234202, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24952534

RESUMO

The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e.g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e.g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles' calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...